Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Międzynarodowy zespół naukowców, w tym dwoje naukowców z NCBJ - Katarzyna Małek i William Pearson, rzucił nieco światła na złożone procesy fizyczne związane z wytwarzaniem pyłu, metali i gwiazd w ewolucji galaktyk. Badacze przeanalizowali dużą próbkę odległych pyłowych galaktyk, wykrytych za pomocą ALMA. Badanie, opublikowane w Astronomy & Astrophysics, ujednoliciło metody obserwacyjne i teoretyczne, znajdując dowody na szybki wzrost pyłu w młodych, ale już bogatych w metale galaktykach w odległym wszechświecie.

Dwa miliardy lat po Wielkim Wybuchu wszechświat był wciąż bardzo młody. Jednak już powstały w nim tysiące ogromnych galaktyk, bogatych w gwiazdy i pył. Międzynarodowe badanie, prowadzone równocześnie przez Wyższą Międzynarodową Szkołę Badań Zaawansowanych (SISSA) w Trieście oraz Narodowe Centrum Badań Jądrowych z udziałem międzynarodowego zespołu naukowców, wyjaśnia teraz, jak to było możliwe. Naukowcy połączyli metody obserwacyjne i teoretyczne, aby zidentyfikować procesy fizyczne leżące u podstaw ich ewolucji i po raz pierwszy znaleźli dowody na szybki wzrost zawartości pyłu w tych galaktykach, spowodowany wysokim stężeniem metali w odległym wszechświecie. Badanie, opublikowane w czasopiśmie Astronomy & Astrophysics, przedstawia nowe podejście do badania fazy ewolucyjnej masywnych obiektów.

Odległe galaktyki, istniejące w bardzo wczesnym wszechświecie, ale już masywne i bardzo aktywnie tworzące nowe gwiazdy, stanowią od momentu ich odkrycia 20 lat temu prawdziwe wyzwanie dla astronomów. Z jednej strony są one trudne do wykrycia, ponieważ znajdują się w gęstych obszarach odległego wszechświata i zawierają cząstki pyłów, które pochłaniają większość światła optycznego emitowanego przez młode gwiazdy – wyjaśnia dr Drako Donevski, stypendysta SISSA i główny autor badania. Z drugiej strony wiele z tych pyłowych "olbrzymów" powstało w czasach, gdy wszechświat był bardzo młody - miał mniej niż 1 miliard lat - i nadal pozostaje zagadką pytanie, jak tak duża ilość pyłu mogła zostać wyprodukowana tak wcześnie we wszechświecie.

Badanie tych egzotycznych obiektów jest teraz możliwe dzięki Atacama Large Millimeter/submillimeter Array (ALMA). Interferometr składający się z 66 teleskopów umieszczony jest na pustyni Atakama w północnym Chile i jest w stanie wykryć światło podczerwone, które przenika przez pyłowe chmury, ujawniając obecność nowo tworzących się gwiazd. Jednak pochodzenie dużej ilości pyłu we wczesnym czasie kosmicznym wciąż pozostaje otwartą kwestią dla astronomów. Przez wiele lat naukowcy sądzili, że powstawanie pyłu kosmicznego jest spowodowane wyłącznie eksplozjami supernowych. Jednak ostatnie prace teoretyczne sugerują, że zawartość pyłu może również wzrastać w wyniku zderzeń cząstek zimnego, bogatego w metale gazu, który wypełnia galaktyki- wyjaśnia naukowiec. Międzynarodowy zespół uczonych z instytucji w Europie, USA, Kanadzie i RPA, kierowany przez dra Donevskiego, połączył metody obserwacyjne i teoretyczne, aby zbadać 300 odległych zapylonych galaktyk w nadziei, że pomoże to odkryć pochodzenie tych "gigantów".

Wyznaczyliśmy właściwości fizyczne naszych galaktyk, stosując specjalną technikę modelowania ich szerokopasmowych widm energetycznych - uzupełnia dr hab. Katarzyna Małek, adiunkt w Zakładzie Astrofizyki Narodowego Centrum Badań Jądrowych. Jest to istotne źródło informacji o naturze galaktyk, ponieważ wiele złożonych procesów fizycznych, które w nich zachodzą, pozostawia swój ślad w ich widmie. Widmo energetyczne, czyli zależność wypromieniowywanej energii od długości fali, to swoiste DNA galaktyki. Modelowanie widm energetycznych pomaga nam oszacować takie wielkości fizyczne, jak masa pyłu lub masa gwiazd w galaktyce. Dzięki analizie widm szerokopasmowych udało nam się zidentyfikować dwie różne populacje galaktyk w naszej próbce: typowe galaktyki aktywne gwiazdotwórczo - tak zwane galaktyki ciągu głównego, i ekstremalne obiekty, w których zachodzą wyjątkowo intensywne procesy gwiazdotwórcze (ang. starburst galaxies). Taka ekstremalna galaktyka tworzy rocznie gwiazdy o łącznej masie nawet 10-100 mas Słońca.

Znaleźliśmy ogromną ilość masy pyłu w większości naszych galaktyk – uzupełnia dr Donevski. Nasze szacunki pokazały, że wybuchy supernowych nie mogą być odpowiedzialne za to wszystko, a część musiała powstać w wyniku zderzeń cząstek w środowisku bogatym w gazowe metale wokół masywnych gwiazd, jak wcześniej przewidywały to modele teoretyczne. To pierwszy przypadek, kiedy dane obserwacyjne potwierdzają istnienie obu mechanizmów produkcji.

Naukowcy przyjrzeli się również zmianom w czasie stosunku masy pyłu do masy gwiazd, aby zbadać, jak skutecznie galaktyki tworzą i niszczą pył podczas swojej ewolucji. To pozwoliło nam zidentyfikować cykl życia pyłu w dwóch różnych populacjach galaktyk: normalnych, oraz bardziej ekstremalnych, szybko ewoluujących galaktykach gwiazdotwórczych - powiedziała Lara Pantoni, doktorantka w SISSA, która opracowała model analityczny służący do interpretacji danych i wykazujący ogromny potencjał w opisywaniu różnic w tych dwóch grupach obserwowanych galaktyk. Co ciekawe, wykazaliśmy również, że bez względu na odległość, masę lub rozmiar gwiazd, zwarte galaktyki gwiazdotwórcze zawsze mają wyższy stosunek masy pyłu do masy gwiazdy niż zwykłe galaktyki.

Aby w pełni ocenić wyniki obserwacji, zespół astronomów skonfrontował także swoje dane z najnowszymi modelami i symulacjami galaktyk. Wykorzystano symulację kosmologiczną SIMBA, nowy zestaw, który symuluje powstawanie i ewolucję milionów galaktyk od początku wszechświata do chwili obecnej, śledząc wszystkie ich właściwości fizyczne, w tym masę pyłu. Do tej pory modele teoretyczne miały problemy z jednoczesnym dopasowaniem zawartości pyłu w galaktykach i właściwości gwiazd. Jednak nasz nowy pakiet symulacji kosmologicznych SIMBA był w stanie odtworzyć większość zaobserwowanych danych - wyjaśnia Desika Narayanan, profesor astronomii na Uniwersytecie Florydy i członek instytutu DAWN w Kopenhadze.

Z naszych badań wynika, że produkcja pyłu w "gigantach" jest zdominowana przez bardzo szybki wzrost ilości cząstek w wyniku ich zderzeń z gazem - podsumowuje dr Donevski. Stanowi to pierwszy dowód na poparcie tezy, że powstawanie pyłu zachodzi zarówno podczas śmierci gwiazd, jak i w przestrzeni między tymi masywnymi gwiazdami, jak zakładają badania teoretyczne. Co więcej, nasza praca oferuje nowe, mieszane, podejście do badania ewolucji masywnych obiektów w odległym wszechświecie, które będą testowane za pomocą przyszłych teleskopów kosmicznych, takich jak Kosmiczny Teleskop Jamesa Webba.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Losy wszechświata zależą od równowagi pomiędzy ciemną energią, a materią. Dark Energy Spectroscopic Instrument (DESI), zamontowany na Kitt Peak w Arizonie działa od 2021 roku i zebrał dane o milionach galaktyk i kwazarów, dzięki czemu powstała największa trójwymiarowa mapa wszechświata. Gdy zaś naukowcy połączyli dane z DESI z danymi uzyskanymi z innych instrumentów, pojawiły się wskazówki, że ciemna energia – o której sądzono, że jest stałą kosmologiczną – ewoluuje w niespodziewany sposób i słabnie z czasem. A to oznacza, że standardowy model kosmologiczny może wymagać aktualizacji.
      DESI to międzynarodowy eksperyment zarządzany przez Lawrence Berkeley National Laboratory (LBNL). Zaangażowanych weń jest ponad 900 naukowców z ponad 70 instytucji badawczych na całym świecie. To co widzimy, jest niezwykle intrygujące. Bardzo ekscytująca jest świadomość, że możemy być o krok od wielkiego odkrycia dotyczącego ciemnej energii i natury wszechświata, mówi profesor Alexie Leauthaud-Harnett, rzecznik prasowa DESI.
      Same w sobie dane z DESI są zgodne z najpowszechniej uznawanym modelem wszechświata Lambda-CDM (ΛCDM), gdzie Λ to ciemna energia będącą tutaj stałą kosmologiczną, a CDM to zimna ciemna materia. Jeśli jednak połączy się te dane z wynikami badań mikrofalowego promieniowania tła (CMB), supernowych oraz słabego soczewkowania grawitacyjnego, coraz bardziej staje się oczywiste, że ciemna energia może słabnąć w czasie i inne modele kosmologiczne mogą lepiej opisywać rzeczywistość.
      Coraz bardziej i bardziej wygląda na to, że musimy zmodyfikować nasz standardowy model kosmologiczny tak, by wszystkie dane do siebie pasowały. A przyjęcie, że ciemna energia ulega ewolucji wydaje się najbardziej obiecującą metodą modyfikacji, dodaje profesor Will Percival, drugi z rzeczników prasowych DESI.
      Jak na razie poziom ufności, że rzeczywiście chodzi o ewolucję ciemnej energii nie osiągnął 5 sigma, kiedy to mówi się o odkryciu. Jednak różne kombinacje danych z DESI z pomiarami CMB, supernowych i soczewkowania dają wartości od 2,8 do 4,2 sigma. Poziom 3 sigma oznacza, że istnieje 0,3% szansy, iż uzyskane dane nie są prawdziwe. Pozornie to niewiele, jednak w fizyce już niejednokrotnie zdarzało się, że obserwacje o poziomie ufności 3 sigma po uwzględnieniu dodatkowych danych okazywały się anomalią statystyczną. Dlatego właśnie o odkryciu jest mowa przy poziomie 5 sigma.
      Pozwalamy wszechświatowi opowiedzieć nam, jak działa i być może mówi nam, że jest bardziej złożony, niż sądziliśmy. To niezwykle interesujące, a coraz więcej linii dowodowych prowadzi nas w tym samym kierunku, dodaje Andrei Cuceu, który stoi na czele grupy roboczej Lyman-alpha, mapującej odległe obszary wszechświata na podstawie rozkładu międzygalaktycznego wodoru.
      Jeśli rzeczywiście ciemna energia słabnie, nie wiemy, co to oznacza. Być może rozszerzanie wszechświata się zatrzyma i pod wpływem grawitacji zacznie się on kurczyć. A być może ciemna energia ulegnie dodatkowemu wzmocnieniu i wszechświat zacznie rozszerzać się jeszcze szybciej. Nowe obserwacje otwierają przed teoretykami nowe możliwości. O ile, oczywiście, są prawdziwe.
      DESI prowadzi jeden z najszerzej zakrojonych przeglądów kosmosu. Supernowoczesny instrument jest w stanie jednocześnie badać światło z 5000 galaktyk. Celem projektu jest zbadanie 50 milionów galaktyk i kwazarów. Cel ten może zostać osiągnięty pod koniec 2026 lub na początku 2027 roku. W międzyczasie, jeszcze w bieżącym roku DESI opublikuje wyniki badań nad gromadzeniem się galaktyk i materii w ciągu miliardów lat. Proces ten obrazuje wzajemne oddziaływanie grawitacji i ciemnej energii. Wyniki tych badań powinny jeszcze lepiej pokazać, czy rzeczywiście ciemna energia ulega osłabieniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pozwala na oglądanie kosmosu tak dokładnie, jak nigdy wcześniej. Dostarczył wielu danych, które zaskoczyły naukowców i zmusiły ich do uściślenia obowiązujących teorii, przyczynił się do pojawienia nowych hipotez, ma udział w interesujących odkryciach. Lior Shamir z Kansas State University poinformował na łamach Monthly Notices of the Royal Astronomical Society o kolejnej zaskakującej obserwacji. Uczony zauważył, że zdecydowana większość galaktyk spiralnych obraca się w tę samą stronę, przeciwną względem obrotu Drogi Mlecznej.
      Jeśli kierunek obrotu galaktyk byłby przypadkowy, to liczba galaktyk obracających się zgodnie z ruchem wskazówek zegara powinna być mniej więcej taka sama, co liczba galaktyk obracających się w stronę przeciwną. Tymczasem gdy Shamir przeanalizował dane dotyczące 263 galaktyk obserwowanych przez Webba w ramach programu James Webb Space Telescopce Advanced Deep Extragalactic Survey (JADES) okazało się, że 2/3 z nich (158) obraca zgodnie z ruchem wskazówek zegara, a obrót 1/3 (105) zachodzi w kierunku przeciwnym. To od razu rzuca się w oczy. Nie trzeba mieć specjalnych zdolności czy wiedzy, by zobaczyć, że liczby są tak bardzo różne. Dzięki JWST każdy może to zobaczyć, dziwi się Shamir.
      To nie pierwszy raz gdy Shamir, ale też i inni uczeni, zauważają taki rozdźwięk. W swojej pracy Shamir wspomina na przykład o galaktykach obrazowanych w ramach SDSS (Sloan Digital Sky Survey). Badania ponad 36 000 galaktyk również pokazują nierównowagę i – co interesujące – im bardziej galaktyki są od nas oddalone, tym nierównowaga ta większa.
      Wracając jednak do obecnych badań, Shamir stwierdza, że istnieją dwa możliwe wyjaśnienia zaobserwowanego zjawiska. Być może wszechświat obracał się w momencie narodzin. Wyjaśnienie to jest zgodne z teoriami takimi jak kosmologia czarnej dziury, zgodnie z którą cały wszechświat znajduje się wewnątrz czarnej dziury. Jeśli jednak rzeczywiście wszechświat obracał się w momencie narodzin, to oznacza, że obowiązujące teorie są niekompletne, mówi Shamir.
      Ziemia, wraz z Układem Słonecznym, krążą wokół centrum Drogi Mlecznej. Efekt Dopplera powoduje, że galaktyki obracające się w przeciwnym kierunku, niż obrót Ziemi względem centrum naszej galaktyki, będą wydawały się nam jaśniejsze. Tutaj może tkwić kolejne z możliwych wyjaśnień naszej zagadki. Astronomowie powinni brać pod uwagę wpływ prędkości obrotowej Drogi Mlecznej – zjawisko to się pomija, gdyż powszechnie uważa się, że jego wpływ jest pomijalny – na pomiary dotyczące innych galaktyk.
      Jeśli rzeczywiście w tym tkwi problem, to musimy inaczej skalibrować instrumenty do obserwacji głębokich partii kosmosu. Zmiana kalibracji i pomiarów odległości pozwoliłaby też rozwiązać kilka ważnych zagadek kosmologicznych, takich jak prędkość rozszerzania się wszechświata czy istnienie galaktyk, które – zgodnie z obecnymi pomiarami – są starsze od wszechświata, mówi Shamir.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W danych z nieczynnego już satelity ROSAT (Roentgen Satellite) znaleziono największą superstrukturę w lokalnym wszechświecie. I, jak twierdzą jej odkrywcy, największą w ogóle strukturę, o której można powiedzieć, że stanowi całość. Naukowcy z Instytutu Maxa Plancka, Uniwersytetu Ludwika i Maksymiliana w Monachium, Uniwersytetu w Kapsztadzie i Europejskiej Agencji Kosmicznej przyjrzeli się obszarowi położonemu w odległości 416–826 milionów lat świetlnych od Ziemi (przesunięcie ku czerwieni z=0,03–0,06). Zauważyli tam gigantyczną superstrukturę o długości 1,4 miliarda lat świetlnych. Nazwali ją Quipu.
      W wielkiej skali wszechświat jest niemal homogeniczny. Jednak gdy przyjrzymy się mniejszym skalom, okazuje się, że występują w nim znaczne różnice w rozkładzie materii. Dokładna wiedza na ten temat jest niezbędna do prowadzenia badań kosmologicznych. Jeśli przyjrzysz się rozkładowi gromad galaktyk na nieboskłonie na sferze znajdującej się w odległości 416–826 milionów lat świetlnych, natychmiast zobaczysz olbrzymią strukturę, która rozciąga się od wysokości północnych niemal do południowej krawędzie nieboskłonu, mówi główny autor bada Hans Böhringer. Składa się ona z 68 gromad galaktyk, ma około 1,4 miliarda lat świetlnych długości, a jej masę oszacowano na 2,4x1017 mas Słońca. Wykracza ona poza wszystko, co dotychczas udało się wiarygodnie zmierzyć we wszechświecie.
      Satelita ROSAT w ciągu ośmiu lat pracy dokonał przeglądu całego nieba w zakresie promieniowania rentgenowskiego. Dzięki niemu skatalogowano około 80 tysięcy źródeł takiego promieniowania i około 6 tysięcy źródeł skrajnego ultrafioletu. Dostarczone przez niego dane wciąż są analizowane i opracowywane. Dzięki nim naukowcy stworzyli bardziej precyzyjne trójwymiarowe mapy rozkładu gromad galaktyk. Stworzony w ten sposób katalog opisuje przestrzeń w odległości do 1 miliarda lat świetlnych od Ziemi.
      Odkrycie Quipu ma duże znaczenie dla pomiarów kosmologicznych. Obecność taki struktur wpływa bowiem na pomiary stałej Hubble'a czy mikrofalowego promieniowania tła. Nawet jeśli wpływ takich struktur zmienia wartości o kilka procent, to jest wpływ niezmiernie istotny, gdyż potrafimy dokonywać coraz bardziej precyzyjnych pomiarów, wyjaśnia Gayoung Chon z Instytutu Fizyki im. Maxa Plancka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM).
      Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters.
      Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk.
      W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza.
      Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd.
      Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki.
      Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...