Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Kurtyna Świecących Koralików (Light Bead Curtain) jest interaktywną instalacją muzyczną, na której można zagrać, dotykając paciorków. Koraliki są zawieszone na linkach. Po dotknięciu koralik zaczyna świecić i wydaje charakterystyczny tylko dla niego dźwięk. Ludzie grają na kurtynie, przekładając przez nią dłoń, dotykając jej głową lub przechodząc na drugą stronę całym ciałem. Twórców kurtyny zainspirował projekt Music Box.

Chociaż na kurtynie mają grać przede wszystkim ludzie, każdy koralik może być kontrolowany i programowany za pomocą komputera. W ten sposób da się uzyskać rodzaj interaktywnego wyświetlacza.

Light Bead Curtain opracowali Ami Wolf i Jin-Yo Mok.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ćmy decydują o tym, gdzie złożyć jaja na podstawie... dźwięków wydawanych przez rośliny – donoszą naukowcy z Uniwersytetu w Tel Awiwie. Okazuje się zatem, że nie tylko rośliny modyfikują swoje zachowanie, odbierając dźwięki wydawane przez owady – o czym pisaliśmy niedawno – ale również zwierzęta reagują na dźwięki wydawane przez rośliny. I podejmują na tej podstawie jedne z najważniejszych decyzji w ich życiu.
      Izraelscy naukowcy z laboratoriów profesora Yossiego Yovela i profesor Lilach Hadany już przed dwoma laty odkryli, że zestresowane w wyniku niekorzystnych warunków środowiskowych rośliny emitują ultradźwięki. Wiele gatunków zwierząt jest w stanie je usłyszeć. Odkrycie to otworzyło nowe pole badawcze dotyczące akustycznej interakcji pomiędzy roślinami a zwierzętami.
      Profesor Yovel i jego zespół wysunęli hipotezę że skoro rośliny wydają dźwięki słyszalne przez zwierzęta, to być może zwierzęta reagują na te dźwięki i odpowiednio się zachowują. Naukowcy skupili się więc na samicach ciem składających jaja na roślinach. Założyli, że owady będą chciały składać jaja na zdrowych roślinach, by larwy po wykluciu się miały dostęp do jak najlepszego pożywienia. Postanowili więc sprawdzić, czy owady złożą jaja na roślinach, które wydają dźwięki świadczące o tym, iż brakuje im wody.
      W pierwszym eksperymencie, chcąc wyizolować element akustyczny od optycznego i zapachowego, naukowcy skonfrontowali ćmy z dwoma pudełkami. W jednym znajdował się głośnik odtwarzający dźwięk odwodnionego krzaku pomidora, z drugiego pudełka nie wydobywały się żadne dźwięki. Ćmy wyraźnie wybierały pudełko z głośnikiem, interpretując je jako żywą roślinę. To wskazało, że zwierzęta odbierają dźwięki wydawane przez rośliny i reagują na nie. Gdy bowiem naukowcy zneutralizowali organy ciem odpowiadające za odbieranie dźwięków, zwierzęta zaczęły traktować oba pudełka jednakowo, co pokazało, że ich preferencje opierały się właśnie na dźwięku, a nie innych sygnałach.
      W drugim eksperymencie ćmy miały do czynienia z dwoma zdrowymi krzakami pomidorów. Przy jednym z nich ustawiono głośnik wydający dźwięki zestresowanej rośliny, drugi krzak nie wydawał dźwięków. Ćmy wybierały cichą roślinę. Najwyraźniej uznały ją za zdrową, a więc lepsze miejsce do złożenia jaj.
      Podczas trzeciego eksperymentu samice znowu miały do czynienia z dwoma pudełkami. W jednym znajdował się samiec, który emituje ultradźwięki podobne do tych emitowanych przez rośliny. W tym przypadku samice nie wykazywały żadnych preferencji i składały jaja na obu pudełkach.
      Na podstawie tak przeprowadzonych badań naukowcy stwierdzili, że samice reagują na dźwięki wydawane przez rośliny i na tej podstawie decydują o miejscu złożenia jaj. Jesteśmy przekonani, że to dopiero początek. Interakcje akustyczne pomiędzy roślinami a zwierzętami są bez wątpienia znacznie bardziej bogate, stwierdzają badacze.
      Źródło: Female Moths Incorporate Plant Acoustic Emissions into Their Oviposition Decision-Making Process, https://elifesciences.org/reviewed-preprints/104700

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Akademii Górniczo-Hutniczej w Krakowie i Katedry Ogrodnictwa Uniwersytetu Przyrodniczego we Wrocławiu badają dźwięki wydawane przez rośliny. Naukowcy chcą sprawdzić, czy w warunkach stresowych – jak susza lub atak szkodników – rośliny informują dźwiękiem o swoim stanie. To nie tylko zwiększy naszą wiedzę o roślinach, ale pomoże też lepiej dbać o uprawy wielkopowierzchniowe. Dotychczas na świecie prowadzono niewiele badań nad tym zagadnieniem.
      Pierwsze eksperymenty przeprowadzono w szklarni doświadczalnej Centrum Innowacyjnych Technologii Produkcji Ogrodniczej Uniwersytetu Przyrodniczego we Wrocławiu. Badaniu poddano tam małe sadzonki pomidorów. Okazało się, że rośliny emitowały impulsy w ultradźwiękach, a ich częstotliwość zmieniała się wraz ze zmianą pory dnia. Więcej impulsów generowane było za dnia niż w nocy.
      Kolejny etap badań prowadzono w komorze bezechowej Laboratorium Akustyki Technicznej AGH. Użyty tam specjalistyczny sprzęt pozwolił na rejestrowanie dźwięków o częstotliwości powyżej 200 kHz. Tak duża czułość jest potrzebna, gdyż różne rośliny emitują dźwięki o różnej częstotliwości. O ile zakres dźwięków emitowanych przez pomidory wynosi 20–50 kHz, to z literatury wiadomo, że zboża czy winorośl wydają dźwięki o częstotliwości 80–150 kHz.
      Badania w komorze bezechowej trwały kilka tygodni. Umieszczona w niej roślina została otoczona przez 8 specjalistycznych mikrofonów, dzięki czemu można było też sprawdzić kierunek emisji dźwięku. W ten sposób przebadano kilka sadzone pomidorów. Najpierw były one prawidłowo nawożone i podlewane, następnie je przesuszano, aż do całkowitego wyschnięcia. Okazało się, że gdy rodzina schła, emitowała coraz bardziej intensywne impulsy dźwiękowe. Teraz naukowcy zajmują się analizą zmian zachodzących w dźwiękach wydawanych przez wysychającą roślinę.
      Badania akustyczne mogłyby znaleźć zatem zastosowanie w kolejnym, bardzo nieoczywistym, obszarze jakim są hodowle kontrolowane roślin, a te jak wiemy zyskują na coraz większej popularności na świecie. Oprócz danych związanych z wilgotnością czy temperaturą otoczenia hodowcy mogliby na podstawie sygnału bezpośrednio od rośliny decydować o wzmocnieniu nawożenia, intensywniejszym podlewaniu czy ochronie przed szkodnikami, bez fizycznej obecności na miejscu, stwierdzają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy postanowił zbadać wpływ hałasu na zwierzęta i ekosystemy morskie. Uczonych zaskoczyło, do jakiego stopnia ludzie zanieczyszczają oceany dźwiękiem, co ma negatywny wpływ na żyjące w nich zwierzęta. Hałas negatywnie wpływa na ich zachowanie, rozmnażanie, zdrowie i może przyczyniać się do śmierci zwierząt.
      Problem jest kolosalny. Na przykład u południowych wybrzeży Chile znajduje się jeden z najważniejszych na południowym Pacyfiku obszarów żerowania płetwali błękitnych. Zwierzęta przybywają tam, by wychowywać młode. Niedawne badania wykazały, że w miesiącach letnich przeciętny płetwal spotyka tam... 1000 łodzi na dobę. Musi więc bez przerwy starać się unikać kolizji, nie mówiąc już o olbrzymim hałasie generowanym przez ich silniki.
      Od czasu rewolucji przemysłowej ludzkość coraz bardziej zanieczyszcza oceany dźwiękiem. Rozwój rybołówstwa, transportu morskiego, turystyki, budowa infrastruktury i wiele innych aktywności H. sapiens powodują, że w światowych oceanach jest coraz więcej sztucznego dźwięku, przez co naturalne odgłosy są coraz słabiej słyszalne.
      Poniżej możemy posłuchać, jak olbrzymia różnica jest pomiędzy naturalnym dźwiękiem oceanu, a dźwiękiem zanieczyszczonym przez człowieka.

      Profesor Carlos M. Duarte z Uniwersytetu Nauki i Technologii im. Króla Abdullaha (KAUST) stanął teraz na czele międzynarodowego zespołu badającego wpływ hałasu na oceany.
      Krajobraz dźwiękowy to silny wskaźnik zdrowia środowiska naturalnego. To, co zrobiliśmy w naszych miastach na lądzie, w których naturalne odgłosy zastąpiliśmy sztucznie generowanym hałasem, zrobiliśmy też w oceanach, mówi Ban Halpern, współautor badań z Narodowego Centrum Analizy Ekologicznej i Syntezy na Uniwersytecie Kalifornijskim w Santa Barbara.
      Nie od dzisiaj wiemy, że niszczymy oceany wprowadzając do nich olbrzymie ilości odpadów, niszcząc wybrzeża i rafy koralowe. Znacznie trudniej jednak zauważyć to, co robimy za pomocą hałasu. Tymczasem może on być niezwykle szkodliwy. Powoduje np. że młode zwierzęta nie słyszą nawoływań rodziców i nie potrafią wrócić do bezpiecznych kryjówek. Tymczasem w projektach ochrony oceanów bardzo rzadko uwzględnia się zanieczyszczenie dźwiękiem.
      Dźwięk w wodzie podróżuje bardzo szybko i bardzo daleko. Nic więc dziwnego, że zwierzęta morskie są bardzo wyczulone na dźwięk. Wykorzystują go w całym szeregu swoich zachowań. Dźwięk odgrywa w oceanach kolosalną rolę. Ludzie wciąż nie doceniają tego aspektu środowiska morskiego, stwierdzają autorzy badań. Nikt z nas nie chciałby mieszkać koło autostrady, bo wiąże się to z ciągłym uciążliwym hałasem. Zwierzęta w oceanie bez przerwy są narażone na olbrzymi hałas.
      Naukowcy z Arabii Saudyjskiej, Danii, USA, Wielkiej Brytanii, Australii, Nowej Zelandii, Holandii, Niemiec, Hiszpanii, Norwegii i Kanady postanowili przeprowadzić dokumentację dźwięków oddziałujących na środowisko morskie na całym świecie. W tym celu przeanalizowali ponad 10 000 prac naukowych na ten temat.
      Głębokie wody oceaniczne są postrzegane przez ludzi – nawet przez specjalistów zajmujących się tym środowiskiem – jako odległe ekosystemy. Jednak gdy wiele lat temu za pomocą hydrofonu słuchałem dźwięków w oceanach, byłem zdumiony, że na głębokości 1000 metrów dominującym dźwiękiem był... dźwięk padającego na powierzchni deszczu. I wtedy zdałem sobie sprawę, jak olbrzymią rolę odgrywa dźwięk w oceanach. W ciągu zaledwie sekundy dociera on z powierzchni na kilometr pod wodę, mówi Duarte.
      Autorzy badań uważają, że w wysiłkach na rzecz ochrony oceanów należy brać pod uwagę hałas generowany przez ludzi. I hałas ten należy zmniejszać. Wiele takich działań można przeprowadzić już teraz i nie byłyby one zbyt skomplikowane. Istnieją np. technologie produkcji cichych silników okrętowych. Powoli się one rozpowszechniają, a wprowadzenie odpowiednich przepisów spowodowałoby ich szybsze wdrożenie i zmniejszenie tym samym hałasu w oceanach.
      Co więcej, tego typu działania odniosłoby natychmiastowy skutek. Gdy np. zanieczyszczamy ocean środkami chemicznymi i przestajemy je stosować, minie wiele lat, gdy środki te przestaną negatywnie oddziaływać na środowisko. W przypadku dźwięku zmniejszenie hałasu natychmiast poprawia sytuację. I środowisko natychmiast reaguje, czego dowodem jest jego szybki odradzanie się w związku ze zmniejszoną aktywnością człowieka spowodowaną COVID-19.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Nanjing Tech University opracowali elastyczny wyświetlacz z żelatyny pozyskiwanej z rybich łusek. W gorącej wodzie (60°C) film żelatynowy rozpuszcza się w ciągu paru sekund, a w glebie ulega całkowitemu rozkładowi w ciągu 24 godzin. Rozwiązanie opisane na łamach ACS Nano jest zarówno tanie, jak i ekologiczne. Dotąd do tego celu wykorzystywano tworzywa sztuczne.
      Jak podkreśla Hai-Dong Yu, można by w ten sposób wykorzystać rybie łuski, które zazwyczaj nie są zjadane i trafiają na wysypisko. Podczas eksperymentów z łusek ekstrahowano żelatynę. Jej roztwór wlewano do szalek Petriego.
      Do żelatyny dodawano wykazujący właściwości elektroluminescencyjne siarczek cynku domieszkowany miedzią oraz pełniące funkcje elektrod srebrne nanodruciki.
      Siarczek ten jest wykorzystywany jako luminofor w grubowarstwowych źródłach światła. Takie struktury elektroluminescencyjne są nazywane zmiennoprądowymi lampami EL (ang. alternating current electroluminescent devices, ACEL devices).
      Podczas testów wykazano, że żelatynowe filmy (FG) miały niezbędne cechy, by dało się zastosować w ubieralnych urządzeniach: odpowiednią elastyczność i przepuszczalność. Ważna jest też niska chropowatość powierzchni.
      Przepuszczalność FG dla pasma światła widzialnego wynosiła 91,1%, a to wartość porównywalna do poli(tereftalanu etylenu), PET - 90,4%. W przypadku materiału kompozytowego z nanodrucikami (Ag NWs-FG) sięgała ona 82,3%. ACEL świeciło nawet po 1000-krotnym wygięciu i rozprostowaniu.
      Jesteśmy podekscytowani zwiększeniem szans na rozwój "zielonej" elastycznej elektroniki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ultracienkie elastyczne ekrany dotykowe, które można zwijać jak papier, stały się rzeczywistością. Są one dziełem australijskich naukowców z RMIT University. Nanopłachty są 100-krotnie cieńsze niż materiały obecnie stosowane do produkcji ekranów dotykowych.
      Nowa technologia jest kompatybilna z istniejącymi technikami produkcji, a naukowcy mają nadzieję, że dzięki niezwykłej elastyczności ekrany dotykowe będzie można produkować w rolkach, podobnie jak wytwarza się gazety. O szczegółach badań, w których brali udział również naukowcy z Uniwersytetu Nowej Południowej Walii, Monash Univeristy oraz ARC Centre of Excellence in Future Low-Energy Electronic Technologies, poinformowano na lamach Nature Electronic.
      Jak zauważa główny autor badań, doktor Torben Daeneke, obecnie większość wyświetlaczy dotykowych w smartfonach wytwarza się z przezroczystego tlenku indowo-cynowego. To dobrze przewodzący, ale bardzo kruchy, materiał. Wzięliśmy ten stary materiał i przetworzyliśmy go od wewnątrz tak, że uzyskaliśmy nową wersję, która jest niezwykle cienka i elastyczna, mówi Daeneke. Teraz można go zginać, skręcać i wytwarzać znacznie taniej i bardziej efektywnie niż materiał, którego obecnie używamy do ekranów dotykowych. Jest też bardziej przezroczysty, zatem przepuszcza więcej światła. To wszystko oznacza, że telefony komórkowe wyposażone w nasz materiał będą zużywały mniej energii, co wydłuży czas pracy na bateriach o około 10%, stwierdza uczony.
      Nowa powłoka powstała dzięki podgrzaniu stopu indu i cyny do temperatury 200 stopni, dzięki czemu stał się płynny. Następnie materiał wylano ultracienką warstwą na płaską powierzchnię, uzyskując powłokę 2D. Powłoka ta ma taki sam skład chemiczny jak standardowe wyświetlacze, jednak inną strukturę krystaliczną, która nadaje jej nowe właściwości mechaniczne i optyczne. Jest w pełni elastyczna i absorbuje jedynie 0,7% światła, podczas gdy standardowy wyświetlacz pochłania nawet 10% światła.
      Przewodnictwem nowej powłoki można manipulować dodając kolejne warstwy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...