Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Przyznano Nagrody Nobla z fizyki. Roger Penrose jednym z laureatów

Rekomendowane odpowiedzi

Królewska Szwedzka Akademia Nauk zdecydowała dzisiaj, że Nagrodę Nobla w dziedzinie fizyki za rok 2020 otrzymają: w połowie Roger Penrose za odkrycie, że formowanie się czarnych dziur potwierdza ogólną teorię względności. Drugą połowę otrzymują wspólnie Reinhard Genzel i Andrea Ghez za odkrycie supermasywnego kompaktowego obiektu w centrum naszej galaktyki.

Roger Penrose to jeden z najwybitniejszych żyjących matematyków, fizyków i filozofów nauki. Uczony urodził się w 1931 roku w Wielkiej Brytanii. Tytuł doktora zdobył na Cambridge University. Obecnie jest emerytowanym profesorem matematyki na University of Oxford.

Reinhard Genzel urodził się w 1952 roku w Niemczech. Tytuł doktora uzyskał na Uniwersytecie w Bonn. Obecnie jest dyrektorem Instytutu Fizyki Pozaziemskiej im. Maxa Plancka oraz profesorem Uniwersytetu Kalifornijskiego w Berkeley.

Urodzona w 1965 roku w Nowym Jorku Andrea Ghez uzyskała tytuł dotorski na Caltechu (California Institute of Technology), a obecnie pracuje na Uniwersytecie Kalifornijskim w Los Angeles.

Tegoroczna gala noblowska będzie miała inny charakter niż wcześniej. Nie wymagamy, by laureaci przybyli do Sztokholmu w grudniu bieżącego roku odebrać nagrody. Z powodu pandemii planujemy online'owe wykłady noblowskie i online'ową ceremonię przyznania nagród, oświadczył Göran Hansson, sekretarz generalny Akademii. Zapewnił jednocześnie, że przed końcem roku wszyscy laureaci otrzymają swoje nagrody i zostaną zaproszeni na galę w innym terminie.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Spotkanie, o którym poinformowaliśmy, nigdy nie miało miejsca. To żart primaaprilisowy. :)
      Ostatnie działania administracji prezydenta Trumpa wywołały spory niepokój w amerykańskim środowisku naukowym. Biały Dom, chcąc rozpoznać i załagodzić sytuację, zorganizował nieformalne spotkanie prezydenta z przedstawicielami Narodowej Fundacji Nauki (NSF). To niezależna agenda rządu federalnego, której zadaniem jest wspieranie badań i edukacji na wszystkich pozamedycznych polach nauki i inżynierii. Z budżetem sięgającym 10 miliardów dolarów NSF finansuje około 25% badań podstawowych wspieranych z budżetu federalnego.
      Z nieoficjalnych doniesień wynika, że spotkanie przebiegało w bardzo dobrej atmosferze, prezydent wypytywał o największe wyzwania i potrzeby amerykańskiej nauki. Ku zdziwieniu zebranych miał też ze spokojem i zrozumieniem przyjmować – lekką co prawda i kulturalną – krytykę swoich dotychczasowych działań. Jeden z biorących w nim udział naukowców zdradził redakcji PNAS (Proceedings of the National Academy of Sciences), pod warunkiem zachowania anonimowości, że rozmowa z gospodarzem Białego Domu przebiegała znacznie lepiej, niż sobie wyobrażał. Wydawało się, że prezydent rozumie obawy naukowców i rzeczywiście się nimi przejmuje.
      Sytuacja uległa zmianie, gdy Donald Trump zapytał o amerykańską fizykę. Naukowcy powiedzieli mu m.in. o amerykańskim udziale w Wielkim Zderzaczu Hadronów (LHC) i w innych międzynarodowych projektach związanych z akceleratorami. Prezydent spytał o amerykańskie akceleratory i dowiedział się, że USA nie posiadają równie dużego co LHC. Gdy zaczął wypytywać o szczegóły, uczeni wyjaśnili mu, że budowa takiego akceleratora trwa wiele lat i jest niezwykle kosztowna. Wówczas Donald Trump powiedział coś, co niemal przyprawiło mnie o zawał, stwierdził rozmówca PNAS. Prezydent stwierdził, że USA powinny wycofać się z Wielkiego Zderzacza Hadronów, zaoszczędzone pieniądze przeznaczyć na budowę amerykańskiego akceleratora i... zabrać amerykańskie części z LHC. Dodał, że zleci administracji odpowiednie działania i analizy prawne, a jeśli są jakieś umowy, to Stany Zjednoczone je wypowiedzą.
      Naukowcy próbowali wyperswadować mu ten pomysł, jednak Donald Trump upierał się, że pieniądze amerykańskich podatników powinny być przeznaczane na rozwój amerykańskiej nauki i zapewniać naukowcom miejsca pracy w USA, a nie za granicą. Spotkanie, jak łatwo się domyślić, nie zakończyło się w równie dobrej atmosferze, w jakiej się toczyło.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tachiony to hipotetyczne cząstki, poruszające się szybciej niż światło. Jeszcze do niedawna uważano, że ich istnienie nie mieści się w ramach szczególnej teorii względności. Jednak praca, opublikowana przez fizyków z Uniwersytetu Warszawskiego i University of Oxford dowodzi, że nie jest to opinia prawdziwa. Tachiony nie tylko nie są wykluczone przez szczególną teorię względności, ale pozwalają ją lepiej zrozumieć, dowodzą profesorowie Artur Ekert, Andrzej Dragan, doktorzy Szymon Charzyński i Krzysztof Turzyński oraz Jerzy Paczos, Kacper Dębski i Szymon Cedrowski.
      Istniały trzy powody, dla których tachiony nie pasowały do teorii kwantowej. Po pierwsze, stan podstawowy pola tachionowego miał być niestabilny, a to oznaczało, że te poruszające się szybciej niż światło cząstki tworzyłyby się same z siebie. Po drugie, zmiana obserwatora miałaby prowadzić do zmiany liczby cząstek. Po trzecie, ich energia miałaby przyjmować wartości ujemne.
      Z pracy opublikowanej na łamach Physical Review D dowiadujemy się, że problemy z tachionami miały wspólną przyczyną. Okazało się bowiem, że aby obliczyć prawdopodobieństwo procesu kwantowego, w którym udział biorą tachiony, trzeba znać zarówno jego przeszły stan początkowy, jak i końcowy. Gdy naukowcy uwzględnili to w teorii, znikają problemy związane z tachionami, a sama teoria okazała się matematycznie spójna.
      Idea, że przyszłość może mieć wpływ na teraźniejszość zamiast teraźniejszości determinującej przyszłość nie jest w fizyce nowa. Jednak dotąd tego typu spojrzenie było co najwyżej nieortodoksyjną interpretacją niektórych zjawisk kwantowych, a tym razem do takiego wniosku zmusiła nas sama teoria. Żeby „zrobić miejsce” dla tachionów musieliśmy rozszerzyć przestrzeń stanów, mówi profesor Dragan.
      Autorzy badań zauważają, że w wyniku rozszerzenia przez nich warunków brzegowych, pojawia się nowy rodzaj splątania kwantowego, w którym przeszłość miesza się z przeszłością. Ich zdaniem, tachiony to nie tylko możliwy, ale koniczny składnik procesu spontanicznego łamania symetrii odpowiedzialnego za powstanie materii. To zaś może oznaczać, że zanim symetria zostanie złamana, wzbudzenie pola Higgsa może przemieszczać się z prędkościami większymi od prędkości światła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Argentynie niektórzy miłośnicy piwa wsypują do kufla fistaszki. Te najpierw toną, później zaś unoszą się na powierzchnię, a następnie znowu toną i znowu się wynurzają. Fizyka fistaszków tańczących w piwie to tytuł artykułu naukowego, w którym akademicy z Niemiec, Francji i Wielkiej Brytanii opisują i wyjaśniają ten fenomen z punktu widzenia fizyki. Dzięki przeprowadzonej przez nich serii eksperymentów  możemy poznać tajemnicę interakcji orzeszków z piwem i przy najbliższej okazji pochwalić się znajomym, że wiemy, na czym ona polega.
      Orzeszki są cięższe od piwa, więc w nim toną. Jednak na dnie stają się miejscami nukleacji (zarodkowania), gromadzenia się bąbelków dwutlenku węgla obecnych w piwie. A gdy bąbelków zgromadzi się wystarczająco dużo, orzeszek zyskuje pływalność i podąża do góry. Gdy dociera na powierzchnię, przyczepione do niego bąbelki ulatniają się, a proces ten ułatwia obracanie się orzeszka. Fistaszek traci pływalność i znowu tonie. Proces powtarza się dopóty, dopóki napój jest na tyle nasycony gazem, by dochodziło do zarodkowania.
      Badający to zjawisko naukowcy zauważyli, że przyczepiające się do orzeszka bąbelki nie są tymi samymi, które samoistnie unoszą się w górę w piwie. Powierzchnia orzeszka powoduje tworzenie się bąbelków, które rosną, gromadzą się i w końcu nadają mu pływalność.
      W rozważanym przypadku do nukleacji gazu, czyli pojawienia się bąbelków, może dojść w samym piwie, na szkle naczynia oraz na orzeszku. Zajmujący się tym poważnym problemem międzynarodowy zespół wyliczył, że z energetycznego punktu widzenia najbardziej korzystna jest nukleacja gazu na orzeszku, a najmniej korzystne jest tworzenie się bąbelków w samym piwie. Dlatego też tak łatwo bąbelki gromadzą się wokół fistaszka i go wypychają. Uczeni wyliczyli nawet, że idealny promień bąbelka przyczepionego do orzeszka wynosi mniej niż 1,3 milimetra.
      Można się oczywiście zżymać, że naukowcy tracą pieniądze podatników na niepoważne badania. Nic jednak bardziej mylnego. Tańczące w piwie fistaszki pozwalają lepiej zrozumieć działanie zarówno przyrody, jak i niektóre procesy przemysłowe. To, co dzieje się w orzeszkiem w piwie jest bardzo podobne do zjawisk zachodzących w czasie procesu flotacji, wykorzystywanego na przykład podczas oddzielania rud minerałów, recyklingu makulatury czy oczyszczania ścieków.
      Badacze zapowiadają, że nie powiedzieli jeszcze ostatniego słowa. Mają bowiem zamiar kontynuować swoje prace, używając przy tym różnych orzeszków i różnych piw.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyka zajmuje się zróżnicowanym zakresem badań, od bardzo przyziemnych, po niezwykle abstrakcyjne. Koreańsko-niemiecki zespół badawczy, na którego czele stał Wenjing Lyu postanowił przeprowadzić jak najbardziej przyziemne badania, a wynikiem jego pracy jest artykuł pt. „Eksperymentalne i numeryczne badania piany na piwie”.
      Naukowcy zajęli się odpowiedzią na wiele złożonych pytań dotyczących dynamiki tworzenia się piany na piwie, co z kolei może prowadzić do udoskonalenia metod warzenia piwa czy nowej architektury dysz, przez które piwo jest nalewane do szkła. Tworzenie się pianki na piwie to skomplikowana gra pomiędzy składem samego piwa, naczynia z którego jest lane a naczyniem, do którego jest nalewane. Naukowcy, browarnicy i miłośnicy piwa poświęcili tym zagadnieniom wiele uwagi. Autorzy najnowszych badań skupili się zaś na opracowaniu metody, która pozwoli najtrafniej przewidzieć jak pianka się utworzy i jakie będą jej właściwości.
      Piana na piwie powstaje w wyniku oddziaływania gazu, głównie dwutlenku węgla, wznoszącego się ku górze. Tworzącymi ją składnikami chemicznymi są białka brzeczki, drożdże i drobinki chmielu. Pianka powstaje w wyniku olbrzymiej liczby interakcji chemicznych i fizycznych. Jest on cechą charakterystyczną piwa. Konsumenci definiują ją ze względu na jej stabilność, jakość, trzymanie się szkła, kolor, strukturę i trwałość. Opracowanie dokładnego modelu formowania się i zanikania pianki jest trudnym zadaniem, gdyż wymaga wykorzystania złożonych modeli numerycznych opisujących nieliniowe zjawiska zachodzące w pianie, czytamy w artykule opisującym badania.
      Naukowcy wspominają, że wykorzystali w swojej pracy równania Reynoldsa jako zmodyfikowane równania Naviera-Stokesa (RANS), w których uwzględnili różne fazy oraz przepływy masy i transport ciepła pomiędzy tymi masami. Liu i jego zespół wykazali na łamach pisma Physics of Fluids, że ich model trafnie opisuje wysokość pianki, jej stabilność, stosunek ciekłego piwa do pianki oraz objętość poszczególnych frakcji pianki.
      Badania prowadzono we współpracy ze startupem Einstein 1, który opracowuje nowy system nalewania piwa. Magnetyczna końcówka jest w nim wprowadzana na dno naczynia i dopiero wówczas rozpoczyna się nalewanie piwa, a w miarę, jak płynu przybywa, końcówka wycofuje się. Naukowcy zauważyli, że w systemie tym pianka powstaje tylko na początku nalewania piwa, a wyższa temperatura i ciśnienie zapewniają więcej piany. Po fazie wstępnej tworzy się już sam płyn. Tempo opadania piany zależy od wielkości bąbelków. Znika ona mniej więcej po upływie 25-krotnie dłuższego czasu, niż czas potrzebny do jej formowania się.
      W następnym etapie badań naukowcy będą chcieli przyjrzeć się wpływowi końcówki do nalewania na proces formowania się piany i jej stabilność.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Trzmiel nie powinien latać, ale o tym nie wie, i lata, Lot trzmiela przeczy prawom fizyki. Setki tysięcy trafień w wyszukiwarkach, rozpaleni komentatorzy i teorie spiskowe, posiłkujące się tym mitem pokazują, jak bardzo trwałe potrafią być niektóre fałszywe przekonania. Bo przecież niemal każdy z nas słyszał, że zgodnie z prawami fizyki trzmiel latać nie powinien i każdy z nas widział, że jednak lata. Naukowcy najwyraźniej coś przed nami ukrywają lub coś nie tak jest z fizyką. A może coś nie tak jest z przekonaniem o niemożności lotu trzmiela?
      Obecnie trudno dociec, skąd wziął się ten mit. Jednak z pewnością możemy stwierdzić, że swój udział w jego powstaniu miał francuski entomolog Antoine Magnan. We wstępie do swojej książki La Locomotion chez les animaux. I : le Vol des insectes z 1934 roku napisał: zachęcony tym, co robione jest w lotnictwie, zastosowałem prawa dotyczące oporu powietrza do owadów i, wspólnie z panem Sainte-Lague, doszliśmy do wniosku, że lot owadów jest niemożliwością. Wspomniany tutaj André Sainte-Laguë był matematykiem i wykonywał obliczenia dla Magnana. Warto tutaj zauważyć, że Magnan pisze o niemożności lotu wszystkich owadów. W jaki sposób w popularnym micie zrezygnowano z owadów i pozostawiono tylko trzmiele?
      Według niektórych źródeł opowieść o trzmielu, który przeczy prawom fizyki krążyła w latach 30. ubiegłego wieku wśród studentów niemieckich uczelni technicznych, w tym w kręgu uczniów Ludwiga Prandtla, fizyka niezwykle zasłużonego w badaniach nad fizyką cieczy i aerodynamiką. Wspomina się też o „winie” Jakoba Ackereta, szwajcarskiego inżyniera lotnictwa, jednego z najwybitniejszych XX-wiecznych ekspertów od awiacji. Jednym ze studentów Ackerta był zresztą słynny Wernher von Braun.
      Niezależnie od tego, w jaki sposób mit się rozwijał, przyznać trzeba, że Magnan miałby rację, gdyby trzmiel był samolotem. Jednak trzmiel samolotem nie jest, lata, a jego lot nie przeczy żadnym prawom fizyki. Na usprawiedliwienie wybitnych uczonych można dodać, że niemal 100 lat temu posługiwali się bardzo uproszczonymi modelami skrzydła owadów i jego pracy. Konwencjonalne prawa aerodynamiki, używane do samolotów o nieruchomych skrzydłach, rzeczywiście nie są wystarczające, by wyjaśnić lot owadów. Tym bardziej, że Sainte-Laguë przyjął uproszczony model owadziego skrzydła. Tymczasem ich skrzydła nie są ani płaskie, ani gładkie, ani nie mają kształtu profilu lotniczego. Nasza wiedza o locie owadów znacząco się zwiększyła w ciągu ostatnich 50 lat, a to głównie za sprawą rozwoju superszybkiej fotografii oraz technik obliczeniowych. Szczegóły lotu trzmieli poznaliśmy zaś w ostatnich dekadach, co jednak nie świadczy o tym, że już wcześniej nie wiedziano, że trzmiel lata zgodnie z prawami fizyki.
      Z opublikowanej w 2005 roku pracy Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight autorstwa naukowców z Kalifornijskiego Instytut Technologicznego (Caltech) oraz University of Nevada, dowiadujemy się, że większość owadów lata prawdopodobnie dzięki temu, iż na krawędzi natarcia ich skrzydeł tworzą się wiry. Pozostają one „uczepione” do skrzydeł, generując siłę nośną niezbędną do lotu. U tych gatunków, których lot udało się zbadać, amplituda uderzeń skrzydłami była duża, a większość siły nośnej było generowanej w połowie uderzenia.
      Natomiast w przypadku pszczół, a trzmiele są pszczołami, wygląda to nieco inaczej. Autorzy badań wykazali, że pszczoła miodna charakteryzuje się dość niewielką amplitudą, ale dużą częstotliwością uderzeń skrzydłami. W ciągu sekundy jest tych uderzeń aż 230. Dodatkowo, pszczoła nie uderza skrzydłami w górę i w dół. Jej skrzydła poruszają się tak, jakby ich końcówki rysowały symbol nieskończoności. Te szybkie obroty skrzydeł generują dodatkową siłę nośną, a to kompensuje pszczołom mniejszą amplitudę ruchu skrzydłami.
      Obrany przez pszczoły sposób latania nie wydaje się zbyt efektywny. Muszą one bowiem uderzać skrzydłami z dużą częstotliwością w porównaniu do rozmiarów ich ciała. Jeśli przyjrzymy się ptakom, zauważymy, że generalnie, rzecz biorąc, mniejsze ptaki uderzają skrzydłami częściej, niż większe. Tymczasem pszczoły, ze swoją częstotliwością 230 uderzeń na sekundę muszą namachać się więcej, niż znacznie mniejsza muszka owocówka, uderzająca skrzydłami „zaledwie” 200 razy na sekundę. Jednak amplituda ruchu skrzydeł owocówki jest znacznie większa, niż u pszczoły. Więc musi się ona mniej napracować, by latać.
      Pszczoły najwyraźniej „wiedzą” o korzyściach wynikających z dużej amplitudy ruchu skrzydeł. Kiedy bowiem naukowcy zastąpili standardowe powietrze (ok. 20% tlenu, ok. 80% azotu) rzadszą mieszaniną ok. 20% tlenu i ok. 80% helu, w której do latania potrzebna jest większa siła nośna, pszczoły utrzymały częstotliwość ruchu skrzydeł, ale znacznie zwiększyły amplitudę.
      Naukowcy z Caltechu i University of Nevada przyznają, że nie wiedzą, jakie jest ekologiczne, fizjologiczne i ekologiczne znaczenie pojawienia się u pszczół ruchu skrzydeł o małej amplitudzie. Przypuszczają, że może mieć to coś wspólnego ze specjalizacją w kierunku lotu z dużym obciążeniem – pamiętajmy, że pszczoły potrafią nosić bardzo dużo pyłku – lub też z fizjologicznymi ograniczeniami w budowie ich mięśni. W świecie naukowym pojawiają się też głosy mówiące o poświęceniu efektywności lotu na rzecz manewrowości i precyzji.
      Niezależnie jednak od tego, czego jeszcze nie wiemy, wiemy na pewno, że pszczoły – w tym trzmiele – latają zgodnie z prawami fizyki, a mit o ich rzekomym łamaniu pochodzi sprzed około 100 lat i czas najwyższy odłożyć go do lamusa.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...