Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Polsko-rosyjski zespół naukowy wyliczył, jak uzyskać jądra superciężkich pierwiastków

Rekomendowane odpowiedzi

Obliczenia wykonane przez polskich naukowców we współpracy z grupą uczonych z Dubnej (Rosja) pozwalają przewidywać z niedostępną dotąd dokładnością szanse wytworzenia nowych izotopów pierwiastków superciężkich. W pracy opublikowanej w prestiżowym czasopiśmie Physics Letters B zaprezentowali oni najbardziej obiecujące kanały produkcji szerokiej gamy izotopów o liczbie atomowej od 112 do 118 w różnych konfiguracjach zderzeń jądrowych prowadzących do ich powstania. Przewidywania wydają się być wiarygodne, jako że potwierdzają je ze znakomitą zgodnością dane eksperymentalne dostępne dla procesów już przebadanych.

W pracy, która ukaże się w październikowym numerze Physics Letters B, międzynarodowy zespół naukowy zaprezentował nowe, niezwykle bogate i obiecujące wyniki przewidywań dla prawdopodobieństw (przekrojów czynnych) produkcji izotopów najcięższych pierwiastków o liczbach atomowych od 112 do 118. Obliczenia zostały przeprowadzone dla procesów fuzji indukowanej pociskami jądrowymi wapnia Ca-48 zgodnie z planami przyszłych eksperymentów. Polscy uczeni – prof. Michał Kowal, kierownik Zakładu Fizyki Teoretycznej Narodowego Centrum Badań Jądrowych i dr Piotr Jachimowicz z Uniwersytetu Zielonogórskiego – dostarczyli wyniki swoich rachunków uwzględniających niebrane do tej pory efekty, a mające ogromny wpływ na dokładność ostatecznie otrzymywanych wyników.

Do tej pory, gdy liczono prawdopodobieństwa wytwarzania superciężkich izotopów, w ogóle nie brano pod uwagę efektów związanych z powłokowym charakterem punków siodłowych w rozszczepieniu jąder atomowych – wyjaśnia prof. Kowal. Wszyscy badacze zakładają brak efektów kwantowych dla tej kluczowej w procesie rozszczepienia konfiguracji jądrowej. My te efekty uwzględniliśmy, a co więcej podaliśmy przepis ich tłumienia wraz ze wzrostem temperatury tworzącego się superciężkiego układu jądrowego. Takie obliczenia nie były dotąd prezentowane nigdzie w literaturze.

Aby uzyskać swój wynik, uczeni posłużyli się metodą statystyczną, generując miliony stanów nad stanem podstawowym i wspominanym punktem siodłowym. Metodę i wyniki opisali szczegółowo w równolegle skierowanej do publikacji pracy. Mając te wyniki, można było dość prosto policzyć prawdopodobieństwo przetrwania jąder wytworzonych w wyniku konkretnego zderzenia pocisku i odpowiednio dobranej tarczy – opowiada prof. Kowal. Po prostu, korzystając z podstawowej definicji prawdopodobieństwa przetrwania jądra złożonego, właściwie bez stosowania przybliżeń, oszacowaliśmy współzawodnictwo rozszczepienia z rożnymi innymi kanałami rozpadu.

Badając stabilność i analizując możliwe kanały rozpadu tworzonych jąder, badacze uwzględnili zarówno rozpady poprzez emisję neutronów, jak i protonów oraz cząstek alfa. Wyniki zaprezentowane w pracy bardzo dobrze zgadzają się z danymi uzyskanymi w przeprowadzonych już eksperymentach. Jednocześnie autorzy wskazują na najbardziej obiecujące kanały produkcji nowych, niewytwarzanych dotąd izotopów, które mogłyby być wykorzystane w przyszłych planowanych eksperymentach.

Rewelacyjna zgodność z istniejącymi funkcjami wzbudzania (prawdopodobieństwami syntezy jąder superciężkich) pozwala mieć zaufanie do zaprezentowanych prognoz i przewidywań. Szczególnie obiecujące dla niektórych kombinacji tarcza-pocisk okazują się kanały z emisją jednego protonu lub jednej cząstki alfa. Ten wynik jest intrygujący, gdyż może prowadzić do zupełnie nowych, nieznanych dziś izotopów jąder superciężkich. Ponieważ zaproponowane kanały reakcji nie są nadmiernie egzotyczne, a raczej łatwo dostępne w eksperymencie, już wkrótce okaże się, czy przewidywania uczonych co do możliwości produkcji tych nowych wyjątkowo ciężkich izotopów się potwierdzą.

Już przed laty informowaliśmy, że ten sam zespół naukowy stwierdził, iż izomery pierwiastków superciężkich mogą być znacznie bardziej stabilne niż dotąd sądzono.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po czterech latach (ostatni stacjonarny finał był w 2019) spowodowanych pandemią tegoroczny Finał XVIII edycji konkursu Fizyczne Ścieżki powrócił do formuły stacjonarnej i odbył się w Narodowym Centrum Badań Jądrowych w Otwocku 20-21 kwietnia 2023 roku. W trakcie dwudniowego finału Konkursu, organizowanego przez Narodowe Centrum Badań Jądrowych i Instytut Fizyki Polskiej Akademii Nauk, zakwalifikowani do niego uczniowie zaprezentowali swoje prace w jednej z trzech kategorii: Pokaz Zjawiska Fizycznego, Praca Naukowa lub Esej. Podobnie jak na prawdziwym seminarium naukowym podczas Finału po prezentacji pracy jej autorzy odpowiadali na pytania Jury oraz osób zasiadających na widowni. Po obejrzeniu efektownych Pokazów Zjawisk Fizycznych, wysłuchaniu prezentacji Prac Naukowych oraz odczytu Esejów, jurorzy udali się na obrady, w wyniku których wyłonili laureatów Konkursu. Zwieńczeniem seminarium finałowego było uroczyste wręczenie uczniom i nauczycielom pamiątkowych dyplomów i nagród.
      Żaden konkurs nie budziłby emocji, gdyby nie możliwość zdobycia atrakcyjnych nagród. W przypadku Fizycznych Ścieżek za jedną z najważniejszych można uznać bezwarunkowy wstęp na wydziały fizyki wybranych uniwersytetów oraz wszystkie kierunki wybranych uczelni technicznych (więcej informacji można znaleźć na stronie Konkursu fizycznesciezki.pl lub stronach współpracujących uczelni). Wysiłek uczniów włożony w przygotowanie i zaprezentowanie pracy został doceniony przez pana Marszałka Adama Struzika, który dla laureatów ufundował nagrody finansowe. Symboliczne czeki w imieniu pana Marszałka wręczył jego reprezentant pan prezes Dariusz Grajda. Konkurs został również wsparty przez Starostę Otwockiego i Prezydenta Otwocka, którzy ufundowali nagrody w postaci książek dla uczniów i nauczycieli. Ponadto uczniowie oraz opiekunowie prac naukowych otrzymali nagrody rzeczowe zakupione dzięki darowiźnie Fundacji PGE.
      Podczas Gali Finałowej oprócz nagród konkursowych wręczono Nagrodę im. Prof. Ludwika Dobrzyńskiego – inicjatora i spiritus movens konkursu Fizyczne Ścieżki. Nagroda ta jest formą wyróżnienia dla nauczycieli i opiekunów naukowych, którzy wykazali się wyjątkowym zaangażowaniem w przygotowanie uczestników do Konkursu. W tym roku przyznano ją nauczycielom ze Słupska - pani Grażynie i Jarosławowi Linderom. Państwo Linder mogą się pochwalić licznymi finalistami i laureatami Konkursu. Wśród nich wielu zdecydowało się kontynuować swoje młodzieńcze zainteresowania, podejmując naukę na uczelniach wyższych na kierunkach nauk ścisłych lub inżynieryjnych.
      Poniżej pełna lista zwycięzców XVIII edycji konkursu Fizyczne Ścieżki:
      Kategoria: Pokaz Zjawiska Fizycznego
      I miejsce zajął:
      Paweł Wakuluk „Generator Marxa czyli wytwarzanie sztucznych błyskawic”
      II miejsce ex aequo zajęli:
      Łukasz Rogalski „Pokaz zjawisk fizycznych w tunelu aerodynamicznym”
      III LO im. Juliusza Słowackiego w Piotrkowie Trybunalskim
      oraz
      Joanna Tokarz, Anna Tokarz „Ze świecą w poszukiwaniu zjawisk fizycznych”
      I Liceum Ogólnokształcące im. Jana Smolenia w Bytomiu
      III miejsce ex aequo zajęli:
      Mateusz Bieniek, Norbert Majewski, Tomasz Cholewiński „Model akumulatora gazowego”
      Zespół Szkół Edukacji Technicznej w Łodzi
      oraz
      Aleksandra Solecka, Milena Bonk, Paweł Klamut „Gdzie pierogi nauczyły się pływać?”
      I Liceum Ogólnokształcące im. Komisji Edukacji Narodowej w Sanoku
      Kategoria: Praca Naukowa
      I miejsce zajął:
      Michał Mielnicki „Wpływ ciągłej wymiany dielektryka na pojemność kondensatora”
      V LO im. Augusta Witkowskiego w Krakowie
      II miejsce zajęli:
      Anita Godyń, Daniel Kmiecik „Jaśniej czy ciemniej? – niech rozstrzygną to pomiary fotometryczne”
      Zespół Szkół Ekonomiczno-Chemicznych w Trzebini
      W kategorii Esej:
      II miejsce ex aequo otrzymały:
      Aleksandra Badora „Dlaczego to fizyk może rozwiązać wielką zagadkę matematyczną?”
      Publiczne LO nr II z Oddziałami Dwujęzycznymi im. Marii Konopnickiej w Opolu
      oraz
      Magdalena Listek „Laboratorium o rozsuwanych ścianach”
      V LO im. Augusta Witkowskiego w Krakowie
      III miejsce otrzymała:
      Olga Ociepa „Postzubrinowskie wojny grawitacyjne”
      Waldorfskie Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bielsku-Białej

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Do końca maja potrwa modernizacja badawczego reaktora jądrowego MARIA. Jako przewidywany termin jego uruchomienia wskazywany jest przełom czerwca i lipca. Dr Marek Pawłowski, rzecznik Narodowego Centrum Badań Jądrowych (NCBJ), wyjaśnia, że napromienianie izotopów ma zostać wznowione od 1. cyklu pracy.
      Przerwa remontowa rozpoczęła się 5 września ubiegłego roku. Była ona podyktowana starzeniem się i brakiem części zamiennych. Dr Pawłowski wspomina również o konieczności dostosowania zbiorników na odpady ciekłe do nowych wymagań prawnych. Gdy prace modernizacyjne zostaną ukończone, rozpocznie się seria testów wszystkich  układów i urządzeń. Najpierw są one sprawdzane przy niepracującym reaktorze, a następnie gdy reaktor pracuje na minimalnej mocy. Gdy testy wypadną pomyślnie, NCBJ zwróci się do prezesa Państwowej Agencji Atomistyki o zgodę na uruchomienie reaktora. Dopiero po jej uzyskaniu MARIA będzie mogła podjąć pracę na nowo.
      Reaktor MARIA działa od grudnia 1974 roku. Jest urządzeniem doświadczalno-produkcyjnym i jednym z najważniejszych źródeł niektórych izotopów promieniotwórczych dla światowej medycyny. Na przykład w ubiegłym roku, dzięki błyskawicznej zmianie harmonogramu pracy MARII, udało się zapobiec światowym niedoborom medycznego molibdenu-99. MARIA, nazwany tak od imienia Marii Skłodowskiej-Curie, wykorzystywany jest też do badań materiałowych i technologicznych, domieszkowania materiałów półprzewodnikowych, neutronowej modyfikacji materiałów oraz badań fizycznych.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Reaktor Maria z Narodowego Centrum Badań Jądrowych (NCBJ) w Świerku to jeden z głównych dostawców medycznego molibdenu-99. Zaspokaja 10% światowego zapotrzebowania. Pierwiastek ten jest stosowany w 80% zabiegów diagnostycznych z użyciem radiofarmaceutyków i w radioterapii. Maria kilkukrotnie w ciągu roku napromieniowuje tarcze uranowe niezbędne w produkcji Mo-99. Jest też skonfigurowany tak, by awaryjnie zwiększać produkcję, gdyby u innych dostawców pojawiły się problemy. Tak było na początku bieżącego roku, gdy w holenderskim reaktorze HFR doszło do awarii. Naukowcy z NCBJ uzyskali właśnie europejski patent na tarcze uranowe wykonane metodą druku 3D, które zoptymalizują produkcję molibdenu.
      Światowe zapotrzebowanie na molibden-99 jest ogromne. Jest to radioizotop wytwarzany zazwyczaj w badawczych reaktorach jądrowych, czyli w urządzeniach o ograniczonych możliwościach produkcyjnych. Właśnie dlatego tak ważne jest ciągłe doskonalenie metod jego produkcji, mówi współtwórca patentu, profesor Paweł Sobkowicz.
      W technikach obrazowania budowy i funkcji naszego ciała często wykorzystuje się izotopy promieniotwórcze, wprowadzane do organizmu. Następnie aparatura diagnostyczna rejestruje fotony emitowane przez jądra rozpadających się pierwiastków. Jednym z najważniejszych z nich jest technet-99m. To izotop metastabilny, a emitowane przezeń fotony są nieszkodliwe dla tkanek i łatwo je rejestrować. Ponadto okres jego połowicznego rozpadu wynosi zaledwie 6 godzin, więc wkrótce po badaniu znika on z organizmu.
      Krótki czas połowicznego rozpadu technetu-99m to zaleta z punktu widzenia pacjenta, jednak poważny problem technologiczny. Znacząco ogranicza to bowiem czas, jaki może minąć pomiędzy wyprodukowaniem pierwiastka, a jego użyciem podczas diagnostyki. Dlatego też do szpitali wysyła się nie technet, a molibden-99, który rozpada się do technetu. Czas połowicznego rozpadu molibdenu-99 wynosi 67 godzin. To wystarczająco dużo, by przewieźć go z miejsca produkcji do szpitala.
      Molibden-99 najczęściej powstaje przez napromienianie neutronami niewielkich tarcz zawierających nisko wzbogacony uran-235. Neutrony z reaktora mają ograniczoną zdolność przenikania do wnętrza materiału tarczy. Aby zagwarantować, że jak najwięcej jąder uranu-235 przekształci się w molibden-99, tarcze zazwyczaj przygotowuje się w postaci cienkich płytek z dyspersji uranu lub jego tlenku albo krzemku w aluminium. Proces produkcji płytek nie pozostawia wiele miejsca na optymalizację. Dlatego zaproponowaliśmy inny sposób przygotowywania tarcz uranowych: druk przestrzenny metodą laserowego spiekania proszków, mówi inżynier Maciej Lipka, jeden z pomysłodawców patentu.
      Polscy eksperci wykorzystali laserowe spiekanie proszków metalowych. To jedna z technik druku przestrzennego, w której wykorzystuje się lasery do topienia warstwy proszku. Techniki takie znane są od dawna, ale dotychczas nie wykorzystywany ich do wytwarzania tarcz uranowych. Eksperci ze Świerku uważają, że ta metoda produkcji ma wiele zalet. Pozwala ona bowiem na zoptymalizowanie kształtu tarcz tak, by lepiej rozpraszały ciepło. Tarcze nagrzewają się więc słabiej, dzięki czemu można zwiększyć w nich zawartość uranu-235, a zatem wyprodukować więcej molibdenu-99.
      Podczas ostrzeliwania neutronami, w tarczy uranowej powstaje nie tylko molibden-99, ale też wiele innych izotopów. Po wyjęciu z reaktora każdą tarczę trzeba więc poddać stosownej obróbce chemicznej, która służy wyodrębnieniu molibdenu. Tymczasem za pomocą druku przestrzennego można przygotować np. tarcze ażurowe, o bardzo dużej powierzchni czynnej, skuteczniej oddziałujące z rozpuszczalnikami chemicznymi, wyjaśnia Maciej Lipka. Co więcej, część jąder uranu-235 nie ulega przemianie po napromieniowaniu, zatem ich kształt można by dobierać tak, by zwiększyć ilość odzyskiwanego z nich uranu, który można użyć do produkcji kolejnych tarcz.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fundacja KGHM Polska Miedź przekazała Uczelnianemu Kołu Ligi Ochrony Przyrody na Uniwersytecie Zielonogórskim (UZ) 60 tys. zł. Dzięki temu zostaną zakupione loggery - niewielkie urządzenia rejestrujące położenie ptaka za pomocą systemu GPS - do założenia na młodych bocianach.
      Łącznie planowany jest zakup 30 loggerów (20 dzięki dotacji i 10 ze środków Instytutu Nauk Biologicznych UZ).
      W lipcu podczas zajęć terenowych studenci pobiorą młodym bocianom krew, a potem założą ptakom umieszczone w specjalnych plecaczkach loggery. Analiza krwi pokaże, w jakiej kondycji bociany wyruszą w pierwszą podróż do Afryki.
      GPS pozwoli na śledzenie szybkości lotu i jego wysokości, a także na sprawdzenie, jak często bociany odpoczywają, jaka jest trasa przelotu i gdzie znajduje się cel podróży.
      Wiosną, po powrocie ptaków do Polski, będzie można ponownie pobrać krew i porównać wyniki z tegorocznymi.
      Bociany są ważnym gatunkiem ptaków w Polsce, a ich ochrona ma wpływ na dobrostan innych ptasich gatunków w naszym kraju – podkreślił zatrudniony na stanowisku asystenta w Katedrze Ochrony Przyrody dr Olaf Ciebiera, prezes Zarządu Okręgu LOP w Zielonej Górze, współautor książki „Ochrona ptaków w mieście”.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rozbłyski gamma, jako jedne z najbardziej energetycznych procesów zachodzących w najdalszych zakątkach Wszechświata, od lat są w centrum zainteresowania astrofizyków. Naukowcy spodziewają się, że podobnie jak w przypadku innych dalekich obiektów, istnieje możliwość soczewkowania grawitacyjnego sygnałów pochodzących od takich zdarzeń. NCBJ bierze udział w poszukiwaniach potwierdzenia tych oczekiwań.
      Rozbłyski gamma (GRB, z ang. Gamma-Ray Burst) są obserwowane na całym niebie i są tak jasne, że sygnały od nich docierają z najodleglejszych zakątków Wszechświata. Właściwe zrozumienie kosmologicznego pochodzenia rozbłysków gamma oraz ich natury, zawdzięczamy Polakowi, profesorowi Bohdanowi Paczyńskiemu. Najdalsze obserwowane GRB mają przesunięcie ku czerwieni (z ang. redshift) ~10. Wynika z tego, że ich źródłami są obiekty, od których światło podróżowało do nas ponad 13 miliardów lat. Ze względu na dużą odległość należy się spodziewać, że światło dochodzące do nas od wielu z nich może ulegać soczewkowaniu grawitacyjnemu wywołanemu przez bliższe nam galaktyki. Jednak poza jednym niedawnym przypadkiem opublikowanym w czasopiśmie Nature, nie zdołano jeszcze zaobserwować soczewkowanego GRB tylko i wyłącznie w oparciu o dane z zakresu gamma.
      Od dawna sugerowano, że soczewkowanie grawitacyjne może powielać obrazy GRB. Obserwacje takich zjawisk mogłyby być wykorzystane między innymi do znaczącego polepszenia dokładności pomiarów parametrów kosmologicznych, takich jak stała Hubble'a, do badania fizyki fundamentalnej (testując prędkość ich propagacji w zależności od energii), oraz do uzyskania ograniczenia na obfitość ciemnej materii w postaci zwartych obiektów (czarne dziury, wystygłe: gwiazdy neutronowe lub białe karły).
      Tradycyjne poszukiwania soczewkowanych GRB skupiają się na zakresie promieni gamma. Międzynarodowy zespół naukowców, w którym pracuje prof. Marek Biesiada z Narodowego Centrum Badań Jądrowych, proponuje by poszukiwania takich zjawisk oprzeć nie tylko o dane gamma, ale też o wielozakresowe obserwacje poświaty rozbłysków (z ang. GRB afterglow).
      Problemów przy szukaniu soczewkowanych rozbłysków gamma jest kilka – mówi prof. Marek Biesiada. Po pierwsze, promieniowanie gamma emitowane jest w obszar dość wąskiego stożka – zatem musimy mieć więcej szczęścia, aby wzajemne ustawienie źródła i soczewki skutkowało obserwowalnymi wielokrotnymi obrazami. Po drugie, detektory gamma mają zbyt słabą rozdzielczość, aby zidentyfikować położenie tych wielokrotnych obrazów. Na szczęście sygnały z obrazów docierają do nas z pewnym opóźnieniem czasowym, czyli detektor powinien zarejestrować dwa sygnały o identycznym kształcie. Tu też tkwi pewien problem: opóźnienie czasowe musi być większe niż 1 sekunda, lecz krótsze niż 300 sekund. W innym przypadku nie mamy szans na odkrycie soczewkowania w detektorze promieni gamma. Ograniczenie czasowe oznacza, że soczewkami mogą tu być obiekty o masach między 100 a 10 mln mas Słońca – to zapewne musiałyby być egzotyczne obiekty, np. masywne czarne dziury o tzw. pośrednich masach, które wciąż są jedynie hipotetyczne. Na szczęście, rozbłyskom gamma towarzyszą znacznie dłużej trwające późniejsze poświaty: najpierw w promieniach X, następnie w świetle widzialnym i na falach radiowych. Co więcej, promieniowanie poświaty nie jest już skolimowane do wnętrza stożka. Mamy więc większe szanse na odkrycie układu soczewkowanego grawitacyjnie. Jest to pomysł, który jakiś czas temu zainspirował mnie i dr Aleksandrę Piórkowską-Kurpas z Uniwersytetu Śląskiego.
      Korzystając ze standardowego modelu poświaty GRB, badacze określili, jak wyglądałyby dane obserwacyjne soczewkowanej poświaty błysków gamma. Analizy oparte zostały o dwa modele soczewek grawitacyjnych: model punktowy (opisujący gwiazdy lub czarne dziury) oraz model galaktyki (tzw. osobliwa izotermiczna sfera). W takiej sytuacji poświata rentgenowska składałaby się z kilku rozbłysków o podobnym kształcie. Z kolei optyczna krzywa jasności poświaty mogłaby posiadać pojaśnienia na swej gałęzi opadającej, gdy jej blask nieuchronnie się zmniejsza. Symulacje numeryczne pozwoliły uzyskać przewidywane profile krzywych jasności poświat w zależności od masy soczewki i opóźnienia czasowego sygnałów.
      W oparciu o swoje analizy naukowcy sugerują, aby przyszłe poszukiwania soczewkowanych GRB oprzeć na dwóch przypadkach obiektów soczewkujących:
      1) Zwarty obiekt, typu czarnej dziury o masie nie większej niż 10 mln mas Słońca. Opóźnienie będzie wtedy niewielkie (~100 sekund lub mniejsze), a zwielokrotnione obrazy gamma mogą być rozdzielone lub nakładające się. Jeśli jednak sygnał opóźniony będzie słabszy niż czułość detektora, aparatura zarejestruje tylko jeden sygnał. W takim przypadku, można wykorzystać późniejsze obserwacje poświaty w zakresach rentgenowskim i optycznym, by ocenić, czy obraz jest soczewkowany, czy może obiekt miał kilka następujących po sobie emisji. Jeśli sygnał GRB jest faktycznie soczewkowany, wówczas poświata rentgenowska najprawdopodobniej zawierałaby kilka rentgenowskich flar o podobnym kształcie. W obrazie optycznym poświaty również powinniśmy zaobserwować pojaśnienia „górki” krzywej jasności.
      2) Galaktyki o masie 1-100 mld mas Słońca. W takim przypadku typowe opóźnienie będzie rzędu ~17 min – 28 h. Wobec tego w zakresie gamma niezmiernie trudno będzie wykryć soczewkowanie (o ile w ogóle będzie to możliwe). Natomiast w zakresie promieni X, światła widzialnego, czy fal radiowych powinny się ujawnić wyraźne flary (pojaśnienia) na tle słabnącej emisji poświaty. Takie zjawisko pozwoliłoby na łatwą weryfikację czy doszło do soczewkowania.
      Biorąc pod uwagę, że teleskopy optyczne oraz radioteleskopy są zazwyczaj w stanie rozróżnić poszczególne obrazy zwielokrotnione, pozwoli to na weryfikację soczewkowania. Jest to kolejny argument na rzecz rozwijania tzw. astronomii wielozakresowej (ang. multimessenger astronomy), co również jest domeną NCBJ.
      W ramach powyższych badań, w archiwalnych danych naukowcy znaleźli potencjalnego kandydata soczewkowanego błysku gamma o katalogowej nazwie – GRB130831A. Opóźnienie czasowe było rzędu 500 sekund, co mieści się w zakresie omawianych sytuacji. Pewne detale tego zjawiska nie pozwalają jednak na stuprocentowe potwierdzenie postawionej hipotezy. Naukowcy nie poddają się i zapowiadają dalsze badania GRB 130831A. Tym samym żywią ogromne nadzieje, że dzięki wielozakresowym przeglądom nieba, w szczególności monitoringu całego nieba w zakresie gamma, znalezienie kolejnych soczewkowanych błysków gamma jest tylko kwestią czasu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...