Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Pierwsze spójne badanie zderzeń galaktyk w rzeczywistych i symulowanych wszechświatach

Rekomendowane odpowiedzi

Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.

Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).

W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.

Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.

Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.

Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.

Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.

W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.

Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wielkie modele językowe (LLM) – takie jak osławiony ChatGPT – nie są w stanie samodzielnie się uczyć i nabierać nowych umiejętności, a tym samym nie stanowią egzystencjalnego zagrożenia dla ludzkości, uważają autorzy badań opublikowanych w ramach 62nd Annual Meeting of the Association for Computational Linguistics, głównej międzynarodowej konferencji dotyczącej komputerowego przetwarzania języków naturalnych.
      Naukowcy z Uniwersytetu Technicznego w Darmstadt i Uniwersytetu w Bath stwierdzają, że LLM potrafią uczyć się, jeśli zostaną odpowiednio poinstruowane. To zaś oznacza, że można je w pełni kontrolować, przewidzieć ich działania, a tym samym są dla nas bezpieczne. Bezpieczeństwo ludzkości nie jest więc powodem, dla którego możemy się ich obawiać. Chociaż, jak zauważają badacze, wciąż można je wykorzystać w sposób niepożądany.
      W miarę rozwoju modele te będą prawdopodobnie w stanie udzielać coraz bardziej złożonych odpowiedzi i posługiwać się coraz doskonalszym językiem, ale jest wysoce nieprawdopodobne, by nabyły umiejętności złożonego rozumowania. Co więcej, jak stwierdza doktor Harish Tayyar Madabushi, jeden z autorów badań, dyskusja o egzystencjalnych zagrożeniach ze strony LLM odwraca naszą uwagę od rzeczywistych problemów i zagrożeń z nimi związanych.
      Uczeni z Wielkiej Brytanii i Niemiec przeprowadzili serię eksperymentów, w ramach których badali zdolność LLM do radzenia sobie z zadaniami, z którymi wcześniej nigdy się nie spotkały. Ilustracją problemu może być na przykład fakt, że od LLM można uzyskać odpowiedzi dotyczące sytuacji społecznej, mimo że modele nigdy nie były ćwiczone w takich odpowiedziach, ani zaprogramowane do ich udzielania. Badacze wykazali jednak, że nie nabywają one w żaden tajemny sposób odpowiedniej wiedzy, a korzystają ze znanych wbudowanych mechanizmów tworzenia odpowiedzi na podstawie analizy niewielkiej liczby znanych im przykładów.
      Tysiące eksperymentów, za pomocą których brytyjsko-niemiecki zespół przebadał LLM wykazało, że zarówno wszystkie ich umiejętności, jak i wszystkie ograniczenia, można wyjaśnić zdolnością do przetwarzania instrukcji, rozumienia języka naturalnego oraz umiejętnościom odpowiedniego wykorzystania pamięci.
      Obawiano się, że w miarę, jak modele te stają się coraz większe, będą w stanie odpowiadać na pytania, których obecnie sobie nawet nie wyobrażamy, co może doprowadzić do sytuacji, ze nabiorą niebezpiecznych dla nas umiejętności rozumowania i planowania. Nasze badania wykazały, że strach, iż modele te zrobią coś niespodziewanego, innowacyjnego i niebezpiecznego jest całkowicie bezpodstawny, dodaje Madabushi.
      Główna autorka badań, profesor Iryna Gurevych wyjaśnia, że wyniki badań nie oznaczają, iż AI w ogóle nie stanowi zagrożenia. Wykazaliśmy, że domniemane pojawienie się zdolności do złożonego myślenia powiązanych ze specyficznymi zagrożeniami nie jest wsparte dowodami i możemy bardzo dobrze kontrolować proces uczenia się LLM. Przyszłe badania powinny zatem koncentrować się na innych ryzykach stwarzanych przez wielkie modele językowe, takie jak możliwość wykorzystania ich do tworzenia fałszywych informacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
      Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
      Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
      W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
      Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
      Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Journal of Medical Internet Research ukazał się opis eksperymentu, w ramach którego ChatGPT miał stawiać diagnozy medyczne i proponować dalsze działania na podstawie opisanych objawów. Algorytm poradził sobie naprawdę nieźle. Udzielił prawidłowych odpowiedzi w 71,7% przypadków. Najlepiej wypadł przy ostatecznych diagnozach, gdzie trafność wyniosła 76,9%, najgorzej poradził sobie z diagnozą różnicową. Tutaj jego trafność spadła do 60,3%.
      Autorzy eksperymentu wykorzystali 36 fikcyjnych przypadków klinicznych opisanych w Merck Manual. Przypadki te są wykorzystywane podczas szkoleń lekarzy i innego personelu medycznego. Naukowcy z Harvard Medical School, Brigham and Women'a Hospital oraz Mass General Brigham wprowadzili do ChataGPT opisy tych przypadków, a następnie zadawali maszynie pytanie, dołączone w podręczniku do każdego z przypadków. Wykluczyli z badań pytania dotyczące analizy obrazów, gdyż ChatGPT bazuje na tekście.
      Najpierw sztuczna inteligencja miała za zadanie wymienić wszystkie możliwe diagnozy, jakie można postawić na podstawie każdego z opisów. Następnie poproszono ją, by stwierdziła, jaki dodatkowe badania należy przeprowadzić, później zaś ChatGPT miał postawić ostateczną diagnozę. Na koniec zadaniem komputera było opisanie metod leczenia.
      Średnia trafność odpowiedzi wynosiła 72%, jednak różniła się w zależności od zadania. Sztuczna inteligencja najlepiej wypadła podczas podawania ostatecznej diagnozy, którą stawiała na podstawie początkowego opisu przypadku oraz wyników dodatkowych badań. Trafność odpowiedzi wyniosła tutaj 76,9%. Podobnie, bo z 76-procentową trafnością, ChatGPT podawał dodatkowe informacje medyczne na temat każdego z przypadków. W zadaniach dotyczących zlecenia dodatkowych badań oraz metod leczenia czy opieki, trafność spadała do 69%. Najgorzej maszyna wypadła w diagnozie różnicowej (60,3% trafnych odpowiedzi). Autorzy badań mówią, że nie są tym zaskoczeni, gdyż diagnoza różnicowa jest bardzo trudnym zadaniem. O nią tak naprawdę chodzi podczas nauki w akademiach medycznych i podczas rezydentury, by na podstawie niewielkiej ilości informacji dokonać dobrego rozróżnienia i postawić diagnozę, mówi Marc Succi z Harvard Medical School.
      Być może w przyszłości podobne programy będą pomagały lekarzom. Zapewne nie będzie to ChatGPT, ale rozwijane już systemy wyspecjalizowane właśnie w kwestiach medycznych. Zanim jednak trafią do służby zdrowia powinny przejść standardowe procedury dopuszczenia do użytku, w tym testy kliniczne. Przed nimi zatem jeszcze długa droga.
      Autorzy opisanych badań przyznają, że miały one ograniczenia. Jednym z nich było wykorzystanie fikcyjnych opisów przypadków, a nie rzeczywistych. Innym, niewielka próbka na której testowano ChatGPT. Kolejnym zaś ograniczeniem jest brak informacji o sposobie działania i treningu ChataGPT.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie z Politechniki Federalnej w Lozannie (EPFL) wykorzystali ChatGPT-3 do zaprojektowania robotycznego ramienia do zbierania pomidorów. To pierwszy przykład użycia sztucznej inteligencji do pomocy w projektowaniu robotów. Eksperyment przeprowadzony przez Josie Hughes, dyrektor Laboratorium Obliczeniowego Projektowania i Wytwarzania Robotów na Wydziale Inżynierii EPFL, doktoranta Francesco Stellę i Cosimo Della Santinę z Uniwersytetu Technicznego w Delfcie, został opisany na łamach Nature Machine Intelligence.
      Naukowcy opisali korzyści i ryzyka związane z wykorzystaniem systemów sztucznej inteligencji (SI) do projektowania robotów. Mimo tego, że ChatGPT to model językowy i generuje tekst, to dostarczył nam on istotnych wskazówek odnośnie fizycznego projektu i wykazał się wielkim potencjałem pobudzania ludzkiej kreatywności, mówi Hughes.
      Naukowcy najpierw „przedyskutowali” z ChatGPT samą ideę robota, określili, czemu ma on służyć, opisali jego parametry i specyfikację. Na tym etapie rozmawiali z SI na temat przyszłych wyzwań stojących przed ludzkością oraz robotów-ogrodników, które mogą rozwiązać problem niedoborów siły roboczej przy uprawie roślin. Następnie, korzystając z faktu, że ChatGPT ma dostęp do danych naukowych, podręczników i innych źródeł, zadawali mu pytania o to na przykład, jakimi cechami powinien charakteryzować się przyszły robot-ogrodnik.
      Gdy już cechy te zostały opisane i zdecydowano, że chodzi o robotyczne ramię zbierające pomidory, przyszedł czas na zapytanie się sztucznej inteligencji o takie szczegóły jak np. kształt chwytaka oraz poproszenie jej o dane techniczne ramienia oraz kod, za pomocą którego byłoby ono kontrolowane. Przeprowadzone przez SI obliczenia posłużyły nam głównie do pomocy inżynierom w implementacji rozwiązań technicznych. Jednak po raz pierwszy sztuczna inteligencja sformułowała tutaj nowe pomysły, mamy tutaj zatem do czynienia ze zautomatyzowaniem procesów wyższych poziomów poznawczych. Rola człowieka w całym procesie przesunęła się bardziej w stronę techniczną, mówi Stella.
      Naukowcy zwracają też uwagę na problemy związane z wykorzystaniem podobnych systemów. Są to zarówno podnoszone już wątpliwości dotyczące plagiatów czy praw autorskich, jak i np. pytanie o to, na ile innowacyjna jest sztuczna inteligencja i na ile ulega schematom. ChatGPT zaproponował ramię do zbierania pomidorów, gdyż uznał pomidory za najbardziej wartościową uprawę, dla której warto zaprojektować robota. To zaś może po prostu oznaczać, że wybrał tą roślinę, która jest najczęściej opisywana, a nie tę, która jest najbardziej potrzebna.
      Pomimo różnych zastrzeżeń uczeni uważają, że podobne do ChatGPT modele językowe mogą spełniać niezwykle użyteczną rolę. Specjaliści od robotyki muszą się zastanowić, jak wykorzystać te narzędzia w sposób etyczny i przynoszący korzyść społeczeństwu, mówi Hughes.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...