Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Komputery kwantowe trzeba będzie zakopywać pod ziemią lub otaczać ołowiem?

Rekomendowane odpowiedzi

Amerykańscy fizycy ostrzegają, że w przyszłości komputery kwantowe będą musiały być chronione grubą warstwą ołowiu lub... przechowywane głęboko pod ziemią. Są bowiem niezwykle wrażliwe na zewnętrzne zakłócenia, w tym na promieniowanie jonizujące. Promieniowanie to może znacząco skracać czas koherencji kubitów (kwantowych bitów), a to z kolei niekorzystnie wpłynie na możliwość praktycznego wykorzystania technologii kwantowych.

William Oliver i jego koledzy z Massachusetts Institute of Technology (MIT) oraz Pacific Northwest National Laboratory zmierzyli i modelowali wpływ promieniowania jonizującego na aluminiowe kubity umieszczone na krzemowym podłożu. Podczas swoich eksperymentów naukowcy wykorzystali dwa kubity, które poddano działaniu dobrze znanego źródła promieniowania jonizującego, cienkiego dysku wykonanego z miedzi-64. Naukowcy mierzyli tempo dekoherencji kubitów. Badali też, jak łatwo w wyniku oddziaływania promieniowania w kubitach pojawiają się kwazicząsteczki. Uzyskane w ten sposób informacje połączyli z danymi dotyczącymi promieniowania jonizującego w laboratorium MIT, pochodzącego zarówno z promieniowania kosmicznego jak i z naturalnych izotopów radioaktywnych. W tym przypadku były to głównie izotopy obecne w betonowych ścianach laboratorium.

Okazało się, że w warunkach panujących w laboratorium górna granica czasu koherencji kubitów wynosi 3–4 milisekund. Po tym czasie następuje dekoherencja, zatem kubity stają się nieprzydatne do przeprowadzania obliczeń.

Uczeni zweryfikowali uzyskane wyniki za pomocą dodatkowego niezależnego eksperymentu sprawdzając, jak można kubity chronić przed promieniowaniem jonizującym. W tym eksperymencie siedem kubitów – a raczej pojemnik z chłodziwem, w którym je przechowywano – zostało otoczonych 10-centymetrową warstwą ołowiu. Podnosząc i opuszczając osłonę byli w stanie zbadać wpływ promieniowania jonizującego oraz osłony na te same kubity. Potwierdzili, że limit czasu koherencji wynosi około 4 ms. Jednocześnie odkryli, że 10-centymetrowa osłona wydłuża ten czas o około 10%.

Jednak biorąc pod uwagę fakt, że istnieją silniejsze od promieniowania jonizującego źródła dekoherencji kubitów, Oliver i jego zespół wyliczają, że 10-centymetrowa osłona wydłuża czas koherencji zaledwie o 0,2%. To niewiele, ale zdaniem naukowców stosowanie takich osłon będzie koniecznością. Zmniejszenie lub pozbycie się wpływu promieniowania jonizującego będzie krytycznym elementem praktycznego wykorzystania nadprzewodzących komputerów kwantowych, napisali na łamach Nature.

Jedną z opcji, przynajmniej na początku rozwoju informatyki kwantowej, mogłoby być umieszczenie komputerów pod ziemią. To jednak wymaga dalszych badań. Oliver mówi, że najlepszym rozwiązaniem będzie stworzenie kubitów, które są mniej podatne na zakłócenia.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Fizyki Uniwersytetu Oksfordzkiego wykonali ważny krok w kierunku praktycznego wykorzystania komputerów kwantowych. Jako pierwsi zaprezentowali kwantowe przetwarzanie rozproszone. Wykorzystali przy tym fotoniczny interfejs, za pomocą którego połączyli dwa procesory kwantowe w jeden w pełni działający komputer. Swoje osiągnięcie opisali na łamach Nature.
      W ten sposób zapoczątkowali rozwiązanie problemu skalowalności maszyn kwantowych. Dzięki temu można, przynajmniej teoretycznie, połączyć olbrzymią liczbę niewielkich urządzeń kwantowych, które działałyby jak jeden procesor operujący na milionach kubitów. Zaproponowana na Oksfordzie architektura składa się z niewielkich węzłów, z których każdy zawiera małą liczbę kubitów, na które składają się jony uwięzione w pułapkach. Połączone za pomocą światłowodów węzły można ze sobą splątać, co pozwala na przeprowadzanie obliczeń kwantowych, podczas których wykorzystuje się kwantową teleportację.
      Oczywiście już wcześniej różne zespoły naukowe potrafiły dokonać kwantowej teleportacji stanów. Wyjątkowym osiągnięciem uczonych z Oksfordu jest teleportacja bramek logicznych. Zdaniem badaczy, kładzie to podwaliny pod „kwantowy internet” przyszłości, w którym odległe procesory utworzą bezpieczną sieć komunikacyjną i obliczeniową.
      Autorzy dotychczasowych badań nad kwantową teleportacją skupiali się na teleportacji stanów kwantowych pomiędzy fizycznie oddalonymi systemami. My użyliśmy kwantowej teleportacji do przeprowadzenia interakcji pomiędzy takimi systemami. Precyzyjnie dostrajając takie interakcje możemy przeprowadzać operacje na bramkach logicznych pomiędzy kubitami znajdującymi się w oddalonych od siebie miejscach. To pozwala na połączenie różnych procesorów kwantowych w jeden komputer, mówi główny autor badań Dougal Main.
      Wykorzystana koncepcja jest podobna do architektury superkomputerów, w których poszczególne węzły obliczeniowe – de facto osobne komputery – są połączone tak, że działają jak jedna wielka maszyna. W ten sposób naukowcy ominęli problem upakowania coraz większej liczby kubitów w jednym komputerze, zachowując jednocześnie podatne na zakłócenia stany kwantowe, niezbędne do przeprowadzania operacji obliczeniowych. Taka architektura jest też elastyczna. Pozwala na podłączania i odłączanie poszczególnych elementów, bez zaburzania całości.
      Badacze przetestowali swój komputer za pomocą algorytmu Grovera. To kwantowy algorytm pozwalający na przeszukiwanie wielkich nieuporządkowanych zbiorów danych znacznie szybciej niż za pomocą klasycznych komputerów. Nasz eksperyment pokazuje, że obecna technologia pozwala na kwantowe przetwarzanie rozproszone. Skalowanie komputerów kwantowych to poważne wyzwanie technologiczne, które prawdopodobnie będzie wymagało nowych badań w dziedzinie fizyki i będzie wiązało się poważnymi pracami inżynieryjnymi w nadchodzących latach, dodaje profesor David Lucas z UK Quantum Computing and Simulation Lab.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit.
      Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń.
      Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze.
      Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem.
      Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat.
      Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu.
      Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...