Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Polsko-niemiecki zespół naukowy znalazł najszybszą gwiazdę Drogi Mlecznej

Recommended Posts

Polsko-niemiecki zespół naukowy zaobserwował niedawno grupę gwiazd najbliższych czarnej dziurze w Drodze Mlecznej i stwierdził, że znajduje się wśród nich najszybsza znana nam gwiazda.  Niektóre z badanych gwiazd znajdują się wewnątrz orbity gwiazdy S2, która jeszcze do niedawna była uważana za najbliższą czarnej dziurze w Drodze Mlecznej.

Czarna dziura znajdująca się w centrum naszej galaktyki nosi nazwę Sagittarius A* (Sgr A*), dlatego też pobliskim jej gwiazdom nadano nazwy od S4711 do S4715. Gwiazdy te badał Michał Zajączek z Centrum Fizyki Teoretycznej w Warszawie we współpracy z naukowcami z Uniwersytetu w Kolonii i Instytutu Radioastronomii im. Maxa Plancka.

Z grupy tej najbardziej interesujące okazały się S4711 oraz S4714. Badania wykazały, że S4711 ma masę 2,2 mas Słońca i okrąża czarną dziurę w ciągu zaledwie 7,6 roku i zbliża się do niej na odległość zaledwie 143,7 (± 18,8) jednostek astronomicznych. Jest więc gwiazdą o najkrótszym okresie orbitalnym i najmniejszej średniej odległości do Sgr A*.

Z kolei S4714 jest najszybszą znaną nam gwiazdą. Co prawda okrąża ona czarną dziurę w ciągu 12 lat, jednak jej orbita jest eliptyczna, dzięki czemu przez dłuższy czas jest poddawana większemu oddziaływaniu ze strony Sgr A*. Z przeprowadzonych badań wynika, że S4714 zbliża się do Sgr A* na odległość zaledwie 12,6 j.a. (± 9,3 j.a.). W takiej odległości osiąga gigantyczną prędkość 23 928 km/s (± 8840 km/s), co stanowi aż 8% prędkości światła.

Szczegóły badań opublikowano w artykule S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbitS4711 on a 7.6 year orbit around Sgr A*.


« powrót do artykułu

Share this post


Link to post
Share on other sites
9 godzin temu, KopalniaWiedzy.pl napisał:

Czarna dziura znajdująca się w centrum naszej galaktyki nosi nazwę Sagittarius A* (Sgr A*), dlatego też pobliskim jej gwiazdom nadano nazwy od S4711 do S4715.

Trochę zbytni skrót perspektywiczny, ponieważ Sgr A* otacza mała gromada "szybkich" gwiazd zwanych gwiazdami S (gromada S); stąd S4711 itd.

9 godzin temu, KopalniaWiedzy.pl napisał:

Z kolei S4714 jest najszybszą znaną nam gwiazdą.

Dla ścisłości nie jest, a bywa. ;)

9 godzin temu, KopalniaWiedzy.pl napisał:

Co prawda okrąża ona czarną dziurę w ciągu 12 lat, jednak jej orbita jest eliptyczna, dzięki czemu przez dłuższy czas jest poddawana większemu oddziaływaniu ze strony Sgr A*.

Hmm. Dość karkołomne twierdzenie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Chińsko-amerykański zespół naukowy donosi o prawdopodobnym odkryciu pierwszej planety poza Drogą Mleczną. Dotychczas udało się odkryć wiele planet pozasłonecznych i kandydatów na planety, jednak wszystkie te obiekty znajdują się w Drodze Mlecznej. Dotychczas jednak nie zidentyfikowano planety, która mogłaby leżeć w innej galaktyce.
      Chińczycy i Amerykanie sądzą, że właśnie mogli znaleźć taką planetę. Obiekt M51-ULS-1b znajduje się w galaktyce Messier 51 (M51, Galaktyka Wir). Znajduje się ona w odległości około 23 milionów lat świetlnych od Ziemi. Można ją zobaczyć z pobliżu ostatniej gwiazdy dyszla Wielkiego Wozu, jednak do obserwacji potrzebny jest teleskop.
      Zaobserwowanie planety położonej tak daleko byłoby niezwykle trudne lub nawet niemożliwe za pomocą współczesnych technik badawczych. Jednak naukowcom z pomocą przyszła nietypowa konfiguracja układu, w której znajduje się M51-ULS-1b.
      Prawdopodobna planeta krąży bowiem wokół układu podwójnego. W jego centrum znajduje się czarna dziura lub gwiazda neutronowa, która właśnie „pożera” swojego towarzysza. W wyniku tego procesu pojawia się silne promieniowanie rentgenowskie, które zwróciło uwagę badaczy. Ponadto źródło tego promieniowania jest bardzo małe. Na tyle małe, że przechodzący na jego tle obiekt, czasowo blokuje promieniowanie. I właśnie takie zjawisko udało się zarejestrować naukowcom z Chin i USA – możliwy tranzyt planetarny trwający około 3 godzin.
      Dotychczas odkrywcy wykluczyli, by to inna gwiazda blokowała promieniowanie rentgenowskie. Obserwowany układ podwójny jest na to zbyt młody. Stwierdzili też, że promieniowanie nie jest blokowane przez materiał wciągany do źródła emisji, gdyż charakterystyki światła nie odpowiadają takiemu wydarzeniu.
      Ostateczne potwierdzenie istnienia planety poza Drogą Mleczną będzie wymagało dalszych badań. Jeśli jednak rzeczywiście mamy do czynienia z planetą to, zdaniem odkrywców, ma ona wielkość Saturna.
      Więcej o odkryciu można przeczytać w serwisie arXiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarnych dziur nie możemy bezpośrednio obserwować. Widzimy jednak gaz i pył, które świecą, gdy są przez nie wchłaniane. Wciągana do czarnej dziury materia wiruje na podobieństwo wody wpływającej do dziury, a nad i pod dziurą pojawia się tzw. korona, zbudowana z jasno świecącego ultragorącego gazu. Przed dwoma laty astronomowie ze zdumieniem zaobserwowali, że korona czarnej dziury w galaktyce 1ES 1927+654 szybko zniknęła, a później równie szybko jest pojawiła.
      Korony czarnych dziur mogą zmieniać jasność nawet 100-krotnie. Jednak w naszym przypadku doszło do bezprecedensowego wydarzenia. W ciągu zaledwie 40 dni jasność korony zmniejszyła się 10 000 razy. Niemal natychmiast korona zaczęła świecić coraz mocniej i po kolejnych 100 dniach jej blask był 20-krotniej silniejszy niż przed przygasaniem.
      Jako, że blask korony jest bezpośrednio związany z materią wchłanianą przez czarną dziurę, zaobserwowane zjawisko świadczyło o tym, że źródło materii zostało odcięte. Jednak co mogło być przyczyną tak spektakularnego wydarzenia?
      Międzynarodowy zespół astronomów z Izraela, USA, Wielkiej Brytanii, Chin, Kanady i Chile uważa, że przyczyną czasowego zniszczenia korony była zabłąkana gwiazda. Znalazła się ona zbyt blisko czarnej dziury i została rozerwana przez siły pływowe. Jej szybko poruszające się szczątki mogły spaść na dysk gazu otaczającego dziurę i chwilowo go rozproszyć.
      Zwykle nie obserwujemy tak dużych zmian w dysku akrecyjnym czarnej dziury, mówi główny autor badań, profesor Claudio Ricci z chilijskiego Uniwersytetu im. Diego Portalesa. To było tak dziwne, że początkowo sądziliśmy, iż coś jest nie tak z naszymi danymi. Gdy stwierdziliśmy, że są one prawidłowe, poczuliśmy dużą ekscytację. Nie mieliśmy jednak pojęcia, z czym mamy do czynienie. NIkt, z kim rozmawialiśmy, nie obserwował wcześniej takiego zjawiska.
      Hipotezę o rozerwanej gwieździe wzmacnia fakt, że kilka miesięcy przed zniknięciem korony zauważono, że dysk akrecyjny badanej czarnej dziury nagle pojaśniał w paśmie widzialnym. Być może był to wynik pierwszego zderzenia z resztkami gwiazdy.
      Najnowsze odkrycie jest również o tyle cenne, że naukowcy mogli całe zjawisko obserwować w czasie rzeczywistym. Oczywiście uwzględniając fakt, że galaktyka 1ES 1927+654 znajduje się w odległości 300 milionów lat świetlnych od Ziemi. Kiedy bowiem obserwatoria doniosły o pojaśnieniu dysku akrecyjnego zespół Ricciego zaczął obserwować czarną dziurę za pomocą kilku narzędzi. Wykorzystano teleskop NICER znajdujący się na Międzynarodowej Stacji Kosmicznej, Neil Gehrels Swift Observatory, NuSTAR oraz XMM-Newton. Wszystkie one zapewniały ciągły napływ danych przez wiele miesięcy, co pozwoliło na obserwowanie zniknięcia i pojawienia się korony.
      Autorzy badań nie wykluczają, że mogą istnieć inne wyjaśnienia obserwowanego zjawiska. Podkreślają, że jedną z wyróżniających się cech tego, co obserwowali był fakt, że spadek jasności korony nie był liniowy. Zmiany zachodziły w różnym tempie, czasami jasność korony spadała 100-krotnie w czasie zaledwie 8 godzin. Wiadomo, że korony czarnych dziur mogą tak bardzo zmieniać jasność, jednak w znacznie dłuższym czasie. Tak dramatyczne skoki, do których dochodziło całymi miesiącami, to coś niezwykłego.
      Te dane wciąż stanowią zagadkę. Ale to niezwykle ekscytujące, gdyż oznacza, że uczymy się czegoś nowego o wszechświecie. Sądzimy, że hipoteza o gwieździe jest dobra, ale wiemy, że jeszcze przez długi czas będziemy to analizowali, mówi współautor badań profesor Erin Kara z MIT.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dziwny biały karzeł podróżujący przez Drogę Mleczną może być pozostałością po „częściowej supernowej”, twierdzą autorzy badań opublikowanych niedawno na łamach Monthly Notices of the Royal Astronomical Society. Gwiazda mknąca przez naszą galaktykę z prędkością 900 000 km/h od lat stanowi zagadkę dla naukowców. Wkrótce po jej odkryciu w 2015 roku zauważono, że ma ona niezwykłą atmosferę.
      Wewnętrzna struktura białych karłów jest zwykle zbudowana z warstw. Jądra tych gwiazd składają się przeważnie z węgla oraz tlenu i są otoczone warstwą helu, a następnie warstwą wodoru. Astronomowie obserwujące białe karły zwykle widzą sam wodór, sam hel lub mieszaninę helu i węgla.
      Tymczasem naukowcy badający białego karła SDSS J1240+6710, znajdującego się 1430 lat świetlnych od Ziemi stwierdzili ze zdumieniem, że jego atmosfera to zadziwiająca mieszanina tlenu, neonu, magnezu i krzemu. Gdy autorzy najnowszych badań, korzystając z Teleskopu Hubble'a, przyjrzeli się gwieździe bliżej, stwierdzili, że w jej atmosferze znajduje się też węgiel, sód i glin. Nigdy wcześniej nie stwierdzono takiego składu atmosfery białego karła. Co więcej SD J1240+6710 jest też wyjątkowo mało masywny. Ma on zaledwie około 40% masy Słońca.
      Gdy odkryliśmy, że ten wyjątkowy biały karzeł ma małą masę i porusza się bardzo szybko, zaczęliśmy się zastanawiać, co się z nim stało w przeszłości, mówi główny autor badań, Boris Gansicke. Uczeni doszli do wniosku, że wszystkie niezwykłe właściwości gwiazdy można wyjaśnić „częściową supernową”.
      Supernowe to najpotężniejsze eksplozje gwiazd. Może do nich dojść, gdy biały karzeł pobierze zbyt wiele masy od towarzyszącej jej gwiazdy. Cała ta dodatkowa masa ściska jądro białego karła, co prowadzi do wzrostu ciśnienia i temperatury. W końcu zostaje zapoczątkowana termonuklearna reakcja łańcuchowa, w wyniku której dochodzi do wybuchu, a ten rozrywa białego karła na strzępy.
      Naukowcy zauważają, że pierwiastki obecne w atmosferze SDSS J1240+6710 mogą pochodzić z początku reakcji termojądrowej. Jednak zastanawiający jest tutaj brak pierwiastków takich jak żelazo, chrom, mangan czy nikiel. Te cięższe pierwiastki powstają z lżejszych. Ich brak sugeruje, że nasz biały karzeł przebył tylko część drogi do stania się supernową. Nie osiągnął temperatury i ciśnienie potrzebnego do wyprodukowania cięższych pierwiastków. To właśnie czyni tego karła wyjątkowym. Rozpoczęła się tam reakcja termojądrowa, ale zatrzymała się ona zanim powstały pierwiastki z grupy żelaza. To był krótki „epizod supernowej”, trwał kilka godzin, stwierdza Gansicke.
      Z badań wynika, że SDSS J1240+6710 był małą gwiazdą w porównaniu do białych karłów, które zamieniają się w supernową. Jako taki mógł co najwyżej skończyć jako słaba supernowa typu Iax.
      Dawniej astronomowie sądzili, że termojądrowa supernowa niszczy białego karła w całości. Jednak w ciągu ostatnich 10-15 lat dowiedzieliśmy się, że możliwe jest powstanie częściowej supernowej, po której pozostaje spalony biały karzeł. Eksplozja nie jest w tym przypadku na tyle silna, by zniszczyć gwiazdę, dodaje uczony.
      Eksplozja taka odrzuciła SDSS J1240+6710 od jej towarzysza, powodując, że przemierza on przestrzeń kosmiczną z prędkością, z jaką krążył wokół towarzyszącej jej gwiazdy. Taki scenariusz wyjaśnia zarówno masę, skład jak i prędkość badanego białego karła.
      Na podstawie masy i temperatury uczeni szacują, że do częściowej supernowej doszło przed około 40 milionami lat. Nie wiemy, jak wyglądał towarzysz SDSS J1240+6710, ale prawdopodobnie był on podobny do badanego karła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trójwymiarowa mapa wszechświata ujawniła istnienie jednej z największych znanych człowiekowi struktur. Ściana Bieguna Południowego, bo tak nazwano tę strukturę, składa się z setek tysięcy galaktyk i rozciąga na odległość 1,4 miliarda lat świetlnych. Wcześniej tego giganta nie zauważono, gdyż jego większa część znajduje się za jasno świecącą Drogą Mleczną.
      Ściana Bieguna Południowego rozmiarami dorównuje Wielkiej Ścianie Sloan, szóstej największej strukturze wszechświata.
      Astronomowie od dawna wiedzą, że galaktyki nie są rozrzucone przypadkowo, ale tworzą wielką kosmiczną sieć. Składa się ona ze zbiorów galakty i wielkich struktur gazowych pomiędzy nimi, a wszystko to poprzedzielane jest pustką kosmosu. Kosmografia zajmuje się mapowaniem tej struktury. Już wcześniej kosmografowie zauważyli inne gigantyczne struktury wszechświata.
      W 2014 roku Daniel Pomarede z Uniwersytetu Paris-Saclay poinformował o istnieniu supergromady Laniakei. To wielka gromada galaktyk, do której należy też Droga Mleczna. Laniakea ma szerokość 520 milionów lat świetlnych.
      Teraz Pomarede i jego zespół przyjrzeli się obszarowi znanemu jako strefa unikania. To ten fragment południowej części wszechświata, który jest przed naszymi oczami przesłonięty Drogą Mleczną. Jasne światło naszej galaktyki przesłania to, co poza nim. Naukowcy śledzili zarówno przesunięcie galaktyk ku czerwieni, jak i ich ruch względem siebie oraz oddziaływania grawitacyjne. Następnie dzięki specjalnym algorytmom uczeni byli w stanie określić, jak wygląda rozkład materii w strefie unikania i wokół niej.
      Analiza wykazała istnienie olbrzymiej struktury z centrum na południowym nieboskłonie, której jedno wielkie ramię rozciąga się w kierunku Gwiazdozbioru Wieloryba, a drugie w kierunku Gwiazdozbioru Ptaka Rajskiego.
      Ściana Bieguna Południowego trafi więc do czołówki największych struktur we wszechświecie. Na czele tej listy znajduje się gigantyczna Wielka Ściana Herkulesa-Korony Północy, której rozpiętość sięga 10 miliardów lat świetlnych. W 2015 roku informowaliśmy o odkryciu Gigantycznego Pierścienia Rozbłysków Gamma. Rozciąga się on na 5,6 miliarda lat świetlnych. Pokonał więc ówczesną rekordzistkę, czyli Olbrzymią Wielką Grupę Kwazarów o szerokości 4 miliardów lat świetlnych. Strukturami większymi od Ściany Bieguna Południowego są jeszcze Wielka Grupa Kwazarów U1.11 (2,5 miliarda lat świetlnych) oraz Wielka Grupa Kwazarów Clowesa-Campusano (2 miliardy lat świetlnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Co jakiś czas przez Drogę Mleczną przechodzi galaktyka karłowata SagDEG (Sagittarius Dwarf Elliptical Galaxy). To drugi najbliższy satelita naszej galaktyki, a jego przejście przez dysk Drogi Mlecznej powoduje silne zaburzenia i wywołuje gwałtowne tworzenie się gwiazd. Niewykluczone, że istnienie Układu Słonecznego zawdzięczamy właśnie jednemu z takich przejść.
      Tomas Ruiz-Lara i Carme Gallart z Wydziału Astrofizyki Universidad de La Laguna w Hiszpanii, Edouard J. Bernadr z Universite Cote d'Azur oraz Santi Cassisi z Wydziału Fizyki Uniwersytetu w Pizie, przeprowadzili analizy formowania się gwiazd w promieniu około 2 kpc (ok. 6600 lat świetlnych) od Słońca. Odkryli trzy bardzo dobrze wyodrębnione okresy formowania się gwiazd, do których doszło 5,7, 1,9 oraz 1,0 miliarda lat temu. Każdy z epizodów był mniej intensywny od poprzedniego.
      Łączenie się galaktyk jest uznawane za jeden z głównych czynników powstawania nowych gwiazd. Obecnie obowiązujące teorie kosmologiczne mówią, że takie właśnie łączenie się masywnych galaktyk odgrywają kluczową rolę w ich powstawaniu. Tak też było z Drogą Mleczną. Jednak nie mamy żadnych dowodów, by w późniejszym okresie istnienia naszej galaktyki doszło do takiego wydarzenia.
      Jednocześnie wiemy o istnieniu w galaktycznym halo strumieni łączących Drogę Mleczną z SagDEG, co wskazuje, że w ciągu ostatnich kilku miliardów lat doszło do bliskiego spotkania obu galaktyk. Naukowcy przeprowadzili więc symulację ruchu SagDEG, w której uwzględnili pozycję kątową, odległości i prędkość strumieni pływowych z SagDEG. Na tej podstawie stwierdzili, że przed 6,5, 4,5, 2,75, 1 oraz 0,1 miliarda lat temu musiało dojść do bliskiego spotkania obu galaktyk. Gdy uściślili jeszcze swoje pomiary stwierdzili, że pewne cechy charakterystyczne dysku Drogi Mlecznej da się wyjaśnić, jeśli masa SagDEG wynoxi około 2,5x1010 masy Słońca i jeśli przeszła ona blisko Drogi Mlecznej przed 2,2 oraz 1,1 miliarda lat temu. Kolejne obserwacje o obliczenia wykazały, że dysk naszej galaktyki został poważnie zaburzony 300-900 milionów lat temu, co w wysokim stopni zgadza się z proponowanymi przejściami przezeń SagDEG.
      Bliskie spotkania obu galaktyk znajdują potwierdzenie nie tylko w Drodze Mlecznej. Badanie populacji gwiazd w SagDEG również wskazuje na pojawianie się tam gwiazd, których czas narodzin oraz skład chemiczny potwierdzają fakt spotkań. Ścisła korelacja pomiędzy zawartością gwiazd w SagDEG oraz w Drodze Mlecznej dodatkowo potwierdza hipotezę o związku pomiędzy okresami tworzenia się gwiazd w Drodze Mlecznej a jej interakcją z SagDEG.
      Uzyskaliśmy szczegółowe informacje na temat historii formowania się gwiazd na obszarze 2kpc lokalnego wszechświata. Odkryliśmy, że mamy do czynienia z epizodami zwiększonego tempa formowania się gwiazd, do których dochodziło około 5,7, 1,9 i 1,0 miliarda lat temu. Wszystkie dowody wskazują, że przyczyną pojawiania się takich epizodów są nawracające interakcje pomiędzy Drogą Mleczną a SagDEG. Odkrycie to wskazuje, że galaktyki o niskiej masie nie tylko wpływają na dynamikę dysku Drogi Mlecznej, ale są również w stanie zapoczątkować duże epizody formowania się gwiazd, czytamy w pracy opublikowanej na łamach Nature.

      « powrót do artykułu
×
×
  • Create New...