Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Była, zniknęła i znowu się pojawiła. Zabłąkana gwiazda rozbiła koronę czarnej dziury?
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Od XIX wieku nauka wie, że zdolność materiałów do absorbowania promieniowania elektromagnetycznego jest równoważna ich zdolności do emitowania tego promieniowania. Zjawisko to odkrył w 1859 roku Gustaw Kirchhoff, który sformułował prawo promieniowania cieplnego nazwane jego nazwiskiem. W ostatniej dekadzie naukowcy zaczęli poszukiwać metamateriałów zdolnych do złamania tego prawa. Udało się przed 2 laty, jednak obserwowane zjawisko było słabe. Teraz naukowcy z Pennsylvania State University donieśli o „dramatycznym” odejściu od prawa Kirchhoffa. Daje to nadzieję, że w przyszłości osiągnięcia tego typu można będzie wykorzystać w praktyce.
Możliwość silnego naruszenia prawa Kirchhoffa to nie tylko nowy sposób na kontrolowanie promieniowania cieplnego, to też metoda znaczącego poprawienia działania urządzeń do wytwarzania użytecznej energii czy jej rejestrowania. Na przykład ogniwa fotowoltaiczne muszą – zgodnie z prawem Kirchhoffa – wyemitować energię z powrotem w kierunku Słońca. Ta energia jest dla nas stracona. Jeśli jednak ogniwa słoneczne emitowałyby tę energię w innym kierunku niż obecnie, moglibyśmy umieścić tam kolejne ogniwo, które zaabsorbowałoby część tej energii, zwiększając efektywność całego panelu. Taka strategia zbliżyłaby nas do pozyskiwania energii słonecznej z wydajnością bliską granicy wyznaczonej przez prawa termodynamiki, mówi główny autor badań Zhenong Zhang.
Naukowcy z Penn State stworzyli materiał, który składa się z pięciu 440-nanometrowych warstw arsenku galu indu (InGaAs) domieszkowanych elektronowo. Im głębiej położona była warstwa, tym większe było domieszkowanie. Całość umieszczono na 100-nanometrowej warstwie srebra, a całość przeniesiono na krzemowe podłoże. Tak przygotowaną próbkę podgrzano do temperatury 267 stopni Celsjusza i poddano oddziaływaniu pola magnetycznego o natężeniu 5T. W takich warunkach stosunek zdolności absorpcji do emisji wyniósł 0,43, podczas gdy zgodnie z prawem Kirchhoffa powinien wynieść 1. Co więcej, złamanie symetrii zaobserwowano w szerokim zakresie kątów padania promieniowania oraz w zakresie promieniowania podczerwonego rozciągającym się od 13 do 23 mikrometrów.
Autorzy badań uważają, że dalszy postęp na tym polu może doprowadzić do stworzenia nowej klasy diod czy tranzystorów, bardziej efektywnych ogniw fotowoltaicznych i innych urządzeń związanych z zarządzaniem energią cieplną.
Źródło: Observation of Strong Nonreciprocal Thermal Emission, https://arxiv.org/pdf/2501.12947
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba najprawdopodobniej odkrył planetę o masie Saturna, krążącą wokół pobliskiej młodej gwiazdy TWA 7. Jeśli odkrycie się potwierdzi, będzie to pierwsza egzoplaneta odkryta przez JWST metodą obrazowania bezpośredniego oraz najlżejsza planeta odkryta kiedykolwiek tą techniką. Odkrycia dokonano za pomocą urządzenia MIRI (Mid-Infrared Instrument), które zarejestrowało źródło słabego promieniowania podczerwonego w dysku otaczającym gwiazdę. Źródło znajduje się w odległości około 50 jednostek astronomicznych od TWA 7. Odpowiada to spodziewanej pozycji planety i wyjaśnia kluczowe cechy dysku.
Badacze z Francji, USA, Irlandii i Niemiec wykorzystali koronograf do przesłonięcia blasku gwiazdy, chcąc w ten sposób zauważyć słabiej świecące obiekty w jej pobliżu. Dzięki zaawansowanym algorytmom przetwarzającym obraz zauważyli w pobliżu słabe źródło promieniowania. Naukowcy wykluczyli, że może być to obiekt z Układu Słonecznego znajdujący się w tej samej części nieboskłonu. Istnieje niewielkie prawdopodobieństwo, że źródłem promieniowania jest galaktyka w tle, jednak zdobyte dowody wskazują na planetę.
Zaobserwowany obiekt znajduje się w przerwie jednego z trzech pierścieni pyłu otaczających TWA 7. Jasność obiektu, jego barwa, odległość od gwiazdy i pozycja w pierścieniu są zgodne z teoretycznymi przewidywaniami dotyczącymi młodych chłodnych planet o masie Saturna, które oczyszczają dysk protoplanetarny ze szczątków.
Dotychczasowe analizy wskazują, mamy do czynienia z młodą planetą, której masa wynosi 0,3 masy Jowisza, czyli jest 100-krotnie większa od Ziemi i odpowiada masie Saturna. Jej temperatura to 47 stopni Celsjusza.
TWA 7, znana jako CE Antilae, to młody (ok. 6,4 miliona lat) czerwony karzeł oddalony od nas o około 34 parseki (ok. 110 lat świetlnych). Znajduje się w asocjacji TW Hydrae. Otaczający ją dysk protoplanetarny jest niemal całkowicie zwrócony w naszą stronę, co czyni go idealnym obiektem badań dla Webba.
Źródło: Evidence for a sub-Jovian planet in the young TWA 7 disk, https://www.nature.com/articles/s41586-025-09150-4
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.