Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kosmiczny pierścień ognia pomaga zrozumieć ewolucję Drogi Mlecznej

Recommended Posts

Australijscy astronomowie odkryli niezwykle rzadki typ galaktyki sprzed 11 miliardów lat. Opisali ją jako kosmiczny pierścień ognia. Galaktyka o masie podobnej do masy Drogi Mlecznej jest okrągła z dziurą w środku. Jej odkrycie może zmienić nasze poglądy na formowanie się i ewolucję najwcześniejszych galaktyk.

To dziwaczny obiekt, jakiego wcześniej nie widzieliśmy. Wygląda jednocześnie dziwnie i znajomo, mówi doktor Tiantian Yuan z ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions.

Galaktyka R5519 znajduje się w odległości 11 miliardów lat świetlnych od Układu Słonecznego. Obecna wewnątrz niej pusta przestrzeń jest kolosalna. Jej średnica wynosi 2 miliardy jednostek astronomicznych. Jest 3 miliony razy większa niż średnica supermasywnej czarnej dziury w galaktyce Messier 87, która w ubiegłym roku stała się pierwszą bezpośrednio zobrazowaną czarną dziurą.

Jak mówi doktor Yuan, tempo powstawania gwiazd w R5519 jest 50-krotnie szybsze niż w Drodze Mlecznej. Większość jej aktywności ma miejsce w pierścieniu, więc to naprawdę pierścień ognia, dodaje.

Dotychczas zdobyte dowody wskazują, że jest to typ galaktyki znanej jako kolizyjna galaktyka pierścieniowa. To pierwszy tego typu obiekt odkryty we wczesnym wszechświecie. Obecnie znamy dwa typy galaktyk pierścieniowych. Jeden z nich, bardziej rozpowszechniony, powstaje w wyniku procesów wewnętrznych. Drugi, jak sama nazwa wskazuje, powstaje w wyniku zderzeń z innymi galaktykami.

W naszym najbliższym otoczeniu galaktyki kolizyjne są 1000-krotnie rzadsze niż galaktyki pierścieniowe powstałe w wyniku procesów wewnętrznych. Najnowsze odkrycie pokazuje, że zawsze były one czymś wyjątkowym. Dzięki niemu będziemy mogli zrozumieć, jak powstają galaktyki spiralne, takie jak Droga Mleczna

Do pojawienia się kolizyjnej galaktyki pierścieniowej konieczna jest obecność cienkiego dysku w galaktyce, w którą uderzyła inna galaktyka. Takie cienkie dyski to niezbędny element galaktyk spiralnych. Zanim one powstają galaktyki takie są nieuporządkowane, nie można ich nazwać galaktykami spiralnymi. Tutaj mamy kolizyjną galaktykę pierścieniową przed 11 miliardów lat. Dla porównania, dysk Drogi Mlecznej zaczął formować się 9 miliardów lat temu. Dzięki odkryciu R5519 widzimy, że proces formowania się dysków galaktyk spiralnych pojawił się wcześniej, niż dotychczas sądziliśmy, mówi drugi za autorów badań, profesor Kenneth Freeman z Australian National University.

Do zapoznania się ze szczegółami zapraszamy na łamy Nature.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Chińsko-amerykański zespół naukowy donosi o prawdopodobnym odkryciu pierwszej planety poza Drogą Mleczną. Dotychczas udało się odkryć wiele planet pozasłonecznych i kandydatów na planety, jednak wszystkie te obiekty znajdują się w Drodze Mlecznej. Dotychczas jednak nie zidentyfikowano planety, która mogłaby leżeć w innej galaktyce.
      Chińczycy i Amerykanie sądzą, że właśnie mogli znaleźć taką planetę. Obiekt M51-ULS-1b znajduje się w galaktyce Messier 51 (M51, Galaktyka Wir). Znajduje się ona w odległości około 23 milionów lat świetlnych od Ziemi. Można ją zobaczyć z pobliżu ostatniej gwiazdy dyszla Wielkiego Wozu, jednak do obserwacji potrzebny jest teleskop.
      Zaobserwowanie planety położonej tak daleko byłoby niezwykle trudne lub nawet niemożliwe za pomocą współczesnych technik badawczych. Jednak naukowcom z pomocą przyszła nietypowa konfiguracja układu, w której znajduje się M51-ULS-1b.
      Prawdopodobna planeta krąży bowiem wokół układu podwójnego. W jego centrum znajduje się czarna dziura lub gwiazda neutronowa, która właśnie „pożera” swojego towarzysza. W wyniku tego procesu pojawia się silne promieniowanie rentgenowskie, które zwróciło uwagę badaczy. Ponadto źródło tego promieniowania jest bardzo małe. Na tyle małe, że przechodzący na jego tle obiekt, czasowo blokuje promieniowanie. I właśnie takie zjawisko udało się zarejestrować naukowcom z Chin i USA – możliwy tranzyt planetarny trwający około 3 godzin.
      Dotychczas odkrywcy wykluczyli, by to inna gwiazda blokowała promieniowanie rentgenowskie. Obserwowany układ podwójny jest na to zbyt młody. Stwierdzili też, że promieniowanie nie jest blokowane przez materiał wciągany do źródła emisji, gdyż charakterystyki światła nie odpowiadają takiemu wydarzeniu.
      Ostateczne potwierdzenie istnienia planety poza Drogą Mleczną będzie wymagało dalszych badań. Jeśli jednak rzeczywiście mamy do czynienia z planetą to, zdaniem odkrywców, ma ona wielkość Saturna.
      Więcej o odkryciu można przeczytać w serwisie arXiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronauci przebywający na Międzynarodowej Stacji Kosmicznej ewakuowali się na pokład pojazdu Sojuz, a sama stacja wykonała manewr obronny, by uniknąć zderzenia ze swobodnie poruszającym się obiektem. Co prawda miał on przelecieć w odległości kilkunastu kilometrów od ISS, jednak na wszelki wypadek dwóch Rosjan i Amerykanina ewakuowano, a stację przesunięto.
      Manewr zakończono, a astronauci mogli wyjść z bezpiecznego miejsca, poinformował na Twitterze szef NASA, Jim Bridenstine. Do zbliżenia się obiektu do stacji doszło dzisiaj o godzinie 00:21 czasu polskiego.
      Międzynarodowa Stacja Kosmiczna znajdujesię na wysokości 420 kilometrów nad Ziemią i porusza się z prędkością 27 568 km/h. Przy tej prędkości zderzenie nawet z niewielkim obiektem może dokonać poważnych zniszczeń.
      W latach 1999–2018 ISS wykonała 25 manewrów w celu uniknięcia zderzenia ze zbliżającymi się obiektami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.
      Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).
      W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.
      Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.
      Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.
      Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.
      Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.
      W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.
      Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polsko-niemiecki zespół naukowy zaobserwował niedawno grupę gwiazd najbliższych czarnej dziurze w Drodze Mlecznej i stwierdził, że znajduje się wśród nich najszybsza znana nam gwiazda.  Niektóre z badanych gwiazd znajdują się wewnątrz orbity gwiazdy S2, która jeszcze do niedawna była uważana za najbliższą czarnej dziurze w Drodze Mlecznej.
      Czarna dziura znajdująca się w centrum naszej galaktyki nosi nazwę Sagittarius A* (Sgr A*), dlatego też pobliskim jej gwiazdom nadano nazwy od S4711 do S4715. Gwiazdy te badał Michał Zajączek z Centrum Fizyki Teoretycznej w Warszawie we współpracy z naukowcami z Uniwersytetu w Kolonii i Instytutu Radioastronomii im. Maxa Plancka.
      Z grupy tej najbardziej interesujące okazały się S4711 oraz S4714. Badania wykazały, że S4711 ma masę 2,2 mas Słońca i okrąża czarną dziurę w ciągu zaledwie 7,6 roku i zbliża się do niej na odległość zaledwie 143,7 (± 18,8) jednostek astronomicznych. Jest więc gwiazdą o najkrótszym okresie orbitalnym i najmniejszej średniej odległości do Sgr A*.
      Z kolei S4714 jest najszybszą znaną nam gwiazdą. Co prawda okrąża ona czarną dziurę w ciągu 12 lat, jednak jej orbita jest eliptyczna, dzięki czemu przez dłuższy czas jest poddawana większemu oddziaływaniu ze strony Sgr A*. Z przeprowadzonych badań wynika, że S4714 zbliża się do Sgr A* na odległość zaledwie 12,6 j.a. (± 9,3 j.a.). W takiej odległości osiąga gigantyczną prędkość 23 928 km/s (± 8840 km/s), co stanowi aż 8% prędkości światła.
      Szczegóły badań opublikowano w artykule S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbitS4711 on a 7.6 year orbit around Sgr A*.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
×
×
  • Create New...