Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Aktywne wykrywanie neutrin. Nowy teleskop zajrzy w miejsca niedostępne obecnym urządzeniom
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Masa neutrina jest co najmniej milion razy mniejsza niż masa elektronu, informują naukowcy z Karlsruhe Tritium Neutrino (KATRIN). Badania określiły nową górną granicę możliwej masy neutrino na podstawie 36 milionów pomiarów. Dzięki nim wiemy, że wynosi ona nie więcej niż 0,45 elektronowolta (eV). Masa elektronu, kolejnej z najlżejszych cząstek elementarnych, to 511 000 elektronowoltów.
Neutrino jest jedyną cząstką elementarną, której masy nie znamy. Zdobycie wiedzy na jej temat pozwoli na zbadanie, w jaki sposób neutrina nabywają masę. Czy – jak inne cząstki – dzięki oddziaływaniu z polem Higgsa, czy też w jakiś inny, nieznany dotychczas sposób. Poznanie masy neutrino powinno też zdradzić, w jaki sposób neutrina narodziły się w czasie Wielkiego Wybuchu i jak wpłynęły na formowanie się galaktyk.
Nowa górna granica masy oznacza doprecyzowanie wcześniejszych badań przeprowadzonych przez KATRIN. W 2022 roku naukowcy pracujący przy tym eksperymencie stwierdzili, że górną granicą masy neutrino jest 0,8 eV. Teraz międzynarodowy zespół złożony z ponad 140 naukowców przeanalizował dane z 259 dni pracy KATRIN i jeszcze bardziej doprecyzował pomiary.
Eksperyment KATRIN Collaboration wykorzystuje rozpad beta trytu. Podczas niego dochodzi do emisji elektronu i antyneutrina. Antycząstki mają taką samą masę jak odpowiadające im cząstki, więc badania antyneutrina pozwalają określić masę neutrina. Jednak neutrina niemal nie wchodzą w interakcje z materią. Ich badanie (i badanie antyneutrin) jest niezwykle trudne. W ramach eksperymentu KATRIN badany jest więc elektron, nie neutrino.
Rozpad beta trytu to jeden z najmniej energetycznych rozpadów beta. Emitowane w jego trakcie elektron i neutrino unoszą łącznie 18,6 keV energii. Elektron trafia do 200-tonowego spektroskopu długości 23 metrów, o którego niezwykłym transporcie na miejsce montażu informowaliśmy kilka lat temu. Spektroskop bada widmo energii elektronu, jeśli precyzyjnie je poznamy, będziemy wiedzieli ile brakuje ze wspomnianych 18,6 keV, zatem ile energii przypadło na neutrino. Brzmi to prosto, ale jest niezwykle skomplikowanym zadaniem.
Eksperyment KATRIN zakończy działanie jeszcze w bieżącym roku. Naukowcy będą wówczas dysponowali danymi zebranymi z 1000 dni. Spodziewają się, że obniżą górną granicę masy neutrino do 0,3 eV, a może nawet do 0,2 eV. To i dobra, i zła wiadomość. Coraz lepiej poznajemy bowiem masę neutrino, ale nie znamy jej dokładnej wartości. Gdyby było to bliżej 1 eV, to eksperymenty takie jak KATRIN mogłyby dać nam ostateczną odpowiedź. Jednak teraz wiemy już, że potrzebne będą znacznie bardziej precyzyjne urządzenia, niż te, którymi obecnie dysponujemy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Głęboko pod powierzchnią Morza Śródziemnego znajduje się niezwykła infrastruktura, wykrywacz neutrin KM3NeT. Jedna część znajduje się 30 km od południowych wybrzeży Francji, na głębokości ok. 2500 m i jest zoptymalizowana do pracy z neutrinami o energiach liczonych w gigaelektronowoltach (GeV). Część druga, KM3NeT-It, położona 100 km na wschód od południowych wybrzeży Sycylii, zlokalizowana 3500 m pod powierzchnią, wykrywa neutrina z zakresu tera- i petaelektronowoltów (TeV, PeV). Zarejestrowano tam najbardziej energetyczne neutrino. Jego energia sięgała 220 PeV.
Międzynarodowy zespół naukowy KM3NeT Collaboration poinformował na łamach Nature, o wynikach analiz przeprowadzonych na danych zebranych przez wykrywacze umieszczone na 21 linach wpuszczonych w głąb morza. Infrastruktura w pobliżu Sycylii pracowała w takich konfiguracji pomiędzy końcem września 2022 a połową września 2023, kiedy to dodano 7 kolejnych lin z detektorami. Uczeni przeanalizowali dane z 287 dni pracy KM3NeT. W tym czasie zarejestrowano 110 milionów interakcji. A najpotężniejsze ze znanych neutrin wykrywacze zarejestrowały 13 lutego 2023 roku. Wspomniane już energia 220 PeV to 16 000 razy więcej niż energia najpotężniejszych kolizji, do jakich dochodzi w Wielkim Zderzaczu Hadronów (LHC).
Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje ich nawet 100 bilionów. Nie mają one jednak ładunku elektrycznego i prawie nie posiadają masy. Niezwykle rzadko wchodzą w interakcje z materią. Dlatego do ich wykrywania używa się gigantycznych teleskopów, takich jak KM3NeT. To zespół czujników zawieszonych na linach w głębinach Morza Śródziemnego, które rejestrują promieniowanie Czerenkowa. Gdy neutrino wchodzi w interakcję z jądrem atomu w wodzie morskiej, może powstać mion. W wyniku interakcji jądro atomu-neutrino powstały mion zyskuje tak olbrzymią energię kinetyczną, że gdy przemieszcza się przez wodę, dochodzi do emisji światła. To właśnie jest promieniowanie Czerenkowa, które możemy porównać do gromu dźwiękowego powstającego, gdy samolot przekracza prędkość dźwięku.
Każda z 230 lin składających się na KM3NeT wyposażona jest w 18 modułów optycznych, z których każdy zawiera 31 fotopowielaczy, wykrywających i wzmacniających słabe rozbłyski światła ze wszystkich kierunków. W tym światło generowane przez miony powstające po uderzeniu neutrin w jądra atomowe. Jak więc łatwo się domyślić, dokładając kolejne liny z kolejnymi fotopowielaczami możemy łatwo rozbudowywać KM3NeT, którego objętość będzie wkrótce liczyła wiele kilometrów sześciennych.
KM3NeT wykrywa obecnie neutrina pochodzące z ekstremalnych źródeł i wydarzeń astrofizycznych. Pierwsze zarejestrowanie neutrina o energii w zakresie setek PeV otwiera nowy rozdział w astronomii, stwierdził Paschal Coyle. Łącząc obserwacje z różnych źródeł, poszukujemy związku pomiędzy promieniowaniem kosmicznym, pojawianiem się neutrin oraz supermasywnymi czarnymi dziurami, wyjaśnia Yuri Kovalev z Instytutu Radioastronomii im. Maxa Plancka.
Źródłem wysokoenergetycznych neutrin mogą być zresztą nie tylko supermasywne czarne dziury, ale też supernowe. Najpotężniejsze z zarejestrowanych neutrin może pochodzić z któregoś z tych źródeł. Może być też pierwszym zauważonym neutrino kosmogenicznym. Mogą one powstawać, gdy wysokoenergetyczne promieniowanie kosmiczne wchodzi w interakcję z reliktowymi niskoenergetycznymi fotonami z mikrofalowego promieniowania tła. Jednak, jako że to jedyne neutrino o energii rzędu setek PeV, naukowcy nie są w stanie określić jego źródła.
KM3Net składa się z dwóch wykrywaczy: ARCA w pobliżu Sycylii i ORCA w pobliżu Tulonu. W skład zespołu ARCA wchodzi 230 lin o długości 700 metrów każda, rozmieszczonych w odległości 100 metrów od siebie. ORCA to 115 lin długości 200 metrów w odległości 20 metrów od siebie. Na każdej linie znajduje się 18 modułów optycznych, wyposażonych w 31 fotopowielaczy. Dane z wykrywaczy trafiają do INFN Laboratori Nazionali del Sud w Portopalo di Capo Passero i Laboratoire Sous-marin Provence Méditerranée w La Seyne-sur-Mer.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niejednokrotnie słyszeliśmy o zagrożeniach związanych z roztapianiem się lądolodów na biegunach. Takie zjawiska jak podnoszenie się poziomu oceanów czy zmiany zasolenia ich wód istnieją w świadomości opinii publicznej. Jednak, jak się dowiadujemy, zmniejszanie się grubości pokryw lodowych może mieć też wpływ na... wulkanizm.
Warstwy lodu o grubości tysięcy metrów wywierają olbrzymi nacisk na leżące pod nimi skały. Gdy lód topnieje, nacisk się zmniejsza, co powoduje unoszenie się skał. To zaś zmniejsza ciśnienie wewnątrz komór magmowych leżących pod skorupą ziemską.
Allie N. Coonin z Brown University postanowiła zbadać wraz z kolegami wpływ ruchów izostatycznych spowodowanych topnieniem się lodu Antarktydy na Ryft Zachodnioantarktyczny. To jeden z największych ryftów – rowów tektonicznych – na Ziemi. Naukowcy przyjrzeli się związkom zlodowacenia oraz wulkanizmu w czasie dwóch ostatnich zlodowaceń. Na potrzeby badań uczeni wykorzystali model komory magmowej i symulowali zmniejszanie się lądolodu Antarktydy Zachodniej, zmniejszając wirtualnie ciśnienie wywierane na leżące poniżej lodu skały i komorę magmową. Badali, jak zmniejszenie ciśnienia prowadziło do powiększenia się komory. W takim przypadku ciśnienie otaczających komorę skał staje się mniejsze niż ciśnienie gazu w magmie. Tworzą się pęcherzyki, które wypychają magmę i dochodzi do erupcji.
Symulując komory magmowe o różnej wielkości naukowcy zauważyli, że im większa komora, tym bardziej reaguje ona na skutki zmniejszania się pokrywy lodowej. Krytycznym czynnikiem jest tutaj tempo utraty lodu. Uczeni symulowali to zjawisko do maksymalnej prędkości utraty 3 metrów lodu na rok.
Chcąc zweryfikować wyniki uzyskane w trakcie symulacji, naukowcy przyjrzeli się wulkanom andyjskim z Southern Volcanic Zone w Patagonii. Pomiędzy 35 a 18 tysięcy lat temu narosło tam 1600 metrów lodu. W okresie interglacjału lód ten zaczął topnieć. Doszło wówczas do zwiększonej aktywności wulkanów Calbuco, Mocho-Choshuenco i Puyehue-Coron Caulle.
Zwiększenie wulkanizmu spowodowane roztapianiem lądolodu może uruchomić sprzężenie zwrotne, gdy roztapiający się lód będzie prowadził do zmniejszenia ciśnienia w komorze magmowej i erupcji, która z kolei roztopi więcej lodu, co wywoła kolejną erupcję. Nawet gdyby antropogeniczne ocieplenie natychmiast się zatrzymało, to zmniejszenie grubości pokrywy lodowej, jakiej już doświadczył Ryft Zachodnioantarktycznego, będzie wpływało na tamtejsze wulkany przez setki lub tysiące lat, stwierdzają autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas czwartej kampanii prowadzonej w ramach finansowanego przez Komisję Europejską projektu „Beyond EPICA – Oldest Ice” międzynarodowy zespół naukowy skompletował rdzeń lodowy o długości 2800 metrów, sięgając do podłoża skalnego Antarktydy. Tym samym – po raz pierwszy w historii – zdobyto próbki lodu, w których znajdują się niezwykle ważne informacje dotyczące historii ziemskiego klimatu i atmosfery starsze niż 800 tysięcy lat. Rdzeń zawiera zapis historii klimatu w ciągu ostatnich 1,2 miliona lat, a być może jeszcze dłużej.
Wiercenia prowadzono w odległym miejscu zwanym Little Dome C. W projekt zaangażowanych było 12 instytucji naukowych z 10 krajów Europy. Pozyskali oni dziewiczy lód, z którego można będzie wydobyć uwięzione bąbelki powietrza, odczytać informacje o temperaturach i składzie atmosfery na w ciągu wielu tysiącleci.
To historyczny moment dla badań nad klimatem i środowiskiem. To najdłuższy nieprzerwany zapis danych klimatycznych zamkniętych w rdzeniu lodowym. Może on dostarczyć nowych informacji na temat cyklu węglowego i jego związku z temperaturami na planecie, mówi profesor Carlo Barbante z Uniwersytetu Ca'Foscari w Wenecji. Wstępne badania wydobytego rdzenia wskazują, że rdzeń zawiera zapis o wysokiej rozdzielczości. W 1 metrze skompresowanego lodu może być zapisana historia klimatu obejmująca maksymalnie 13 tysięcy lat.
Odpowiednią lokalizację do wierceń wybraliśmy wykorzystując najnowocześniejsze techniki badania lodu falami radiowymi oraz modele płynięcia lodu. Szczególnie imponujący jest fakt, że wykorzystane przez nas technologie wykazały, że na głębokości od 2426 do 2490 metrów powinien znajdować się zapis obejmujący okres od 800 tysięcy do 1,2 miliona lat temu. I tak właśnie było, cieszy się jeden z czołowych ekspertów w tej dziedzinie, profesor Frank Wilhelms z Uniwersytetu w Göttingen i Instytutu Alfreda Wegenera. Ostatnie 210 metrów rdzenia, znajdujące się poniżej lodu zawierającego zapis sprzed ponad 1,2 miliona lat, to stary lód, silnie zdeformowany, który prawdopodobnie uległ wymieszaniu lub ponownemu zamrożeniu. To lód nieznanego pochodzenia. Jego szczegółowe badania pozwolą nam zweryfikować teorie dotyczące zachowania ponownie zamarzającego lodu pod lądolodem Antarktydy i umożliwią lepsze zbadania historii lądolodu Antarktyki Wschodniej, dodaje uczony.
Rdzenie wydobyte podczas „Beyond Epica – Oldest Ice” zostaną przewiezione do Europy na pokładzie lodołamacza Laura Bassi. Podczas transportu będą przechowywane w temperaturze -50 stopni Celsjusza, co jest poważnym wyzwaniem technologicznym i logistycznym. Konieczne było stworzenie wyspecjalizowanych kontenerów i odpowiednie wykorzystanie morskich i powietrznych środków transportowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jeszcze do niedawna Antarktyda była jedynym kontynentem, na którym nie znaleziono bursztynu. Właśnie się to zmieniło. Naukowcy z Alfred-Wegener-Institut (AWI) i TU Bergakademie Freiberg opublikowali na łamach Antarctic Science artykuł, w którym informują o odkryciu najbliższych biegunowi południowemu kawałków bursztynu. Dowodzi to, że około 90 milionów lat temu na Antarktydzie rosły drzewa, z których wyciekała żywica.
Bursztyn znaleziono w rdzeniu pobranym podczas wyprawy badawczej na pokładzie lodołamacza Polarstern w 2017 roku. Rdzeń został pobrany w Zatoce Pine Island z osadów dennych znajdujących się na głębokości 946 metrów. Dokładne współrzędne geograficzne miejsca pochodzenia rdzenia to 73 stopnie 57 minut szerokości geograficznej południowej i 107 stopni 9 minut długości geograficznej zachodniej (73.57°S, 107.09°W).
Żywica znajdowała się w 5-centymetrowej warstwie węgla brunatnego. Po wysuszeniu, węgiel został pokruszony na 1-milimetrowe kawałki i zbadany pod mikroskopem. Właśnie wtedy zauważono liczne fragmenty bursztynu o długości 0,5–1 mm. Miały one barwę od intensywnie żółtej po brązowawą.
Analizowane fragmenty dają nam bezpośredni wgląd w warunki naturalne, jakie 90 milionów lat temu panowały w Zachodniej Antarktyce. To również fascynujące szczegółowe uzupełnienie wiedzy o funkcjonowaniu lasu, który opisaliśmy w Nature w 2020 roku, mówi geolog morski Johann P. Klages z AWI. Widzimy więc, że w pewnym momencie swojej historii każdy z siedmiu współczesnych kontynentów zapewniał warunki do życia drzewom wytwarzającym żywicę. Naszym celem jest dowiedzenie się jak najwięcej o tym lesie. Czy dochodziło tam do pożarów, czy w bursztynie znajdziemy ślady życia. Nasze odkrycie pozwala nam na bezpośrednią podróż w czasie, stwierdza uczony.
Znalezienie bursztynu to kolejny kawałek układanki, dzięki któremu lepiej zrozumiemy bagnisty, pełen drzew iglastych las strefy umiarkowanej, jaki na biegunie południowym istniał we wczesnej kredzie, dodaje Henny Gerschel z TU Bergakademie Freiberg.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.