Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Znaleziono zastosowanie dla włókien ze skórki najbardziej śmierdzącego owocu świata

Rekomendowane odpowiedzi

Durian to azjatycki owoc, który mimo intensywnego nieprzyjemnego zapachu jest przez wielu ludzi uznawany za prawdziwy przysmak. Okazuje się, że włókna z jego skórki mogą znaleźć zastosowanie m.in. w biodegradowalnych opakowaniach na żywność, a także w druku 3D.

Naukowcy z International Islamic University Malaysia zmieszali włókna ze skórki duriana z epoksydowanym olejem roślinnym. W ten sposób powstał biodegradowalny polimer, któremu można nadać postać pojemników/tacek na żywność.

Po 3 miesiącach w glebie degradacji ulega ok. 83% opakowania. Zespół podkreśla, że biokompozyt może też znaleźć zastosowanie jako alternatywny filament (tworzywo) do druku 3D.

Durian jest uznawany za najbardziej śmierdzący owoc świata. Ma nawet własny znak zakazu. Mieszkańcy Azji nie mogą mu się jednak oprzeć. Wg nich, pachnie jak piekło, ale smakuje jak niebo. Odór owoców duriana jest tak mocny, że stoisko z tymi owocami można ponoć wyczuć z odległości kilkudziesięciu metrów. Obmyślając zastosowanie dla włókien z jego skórki, Malezyjczycy odciążają wysypiska (normalnie skórki tam by trafiły).


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ludzie od dawna spożywają alkohol i od tysiącleci odgrywa on rolę we wzmacnianiu więzi społecznych. Nowe badania wskazują, że nasi najbliżsi krewni – szympansy – mogą wykorzystywać alkohol w podobnym celu. Po raz pierwszy udało się sfilmować szympansy, które dzielą się sfermentowanymi owocami, w których stwierdzono obecność alkoholu.
      Naukowcy pracujący pod kierunkiem badaczy z University of Exeter ustawili kamery w Parku Narodowym Cantanhez w Gwinei-Bissau. Na nagraniach widać, jak szympansy dzielą się sfermentowanymi owocami drzewa z gatunku Treculia africana. To zaś rodzi pytanie, czy zwierzęta używają alkoholu w tym samym celu, co ludzie.
      Wiemy, że u ludzi spożywanie alkoholu prowadzi do uwalniania dopaminy i endorfiny, poczucia odprężenia i szczęścia. Wiemy też, że alkohol – w tym takie tradycyjne ludzkie zachowania jak organizowanie uczt – pomaga tworzyć i wzmacniać więzi społeczne. Skoro teraz wiemy, że szympansy dzielą się owocami zawierającymi alkohol, pytanie brzmi: czy odnoszą z alkoholu podobne korzyści, co ludzie, zastanawia się Anna Bowland w University of Exeter. Kamery zarejestrowały 10 różnych okazji, podczas których szympansy dzieliły się owocami z alkoholem. Gdy następnie naukowcy zbadali pozostawione resztki stwierdzili, że średnia zawartość alkoholu w owocach wynosiła 0,61%. To niewiele, jednak musimy pamiętać, że owoce stanowią 60–85% diety szympansów, zatem mogą one spożywać dość spore jego ilości.
      Naukowcy nie sądzą, by małpy się upijały. To niebezpieczne i zmniejsza szanse przetrwania. Nie znamy też wpływu alkoholu na metabolizm szympansów. Niedawno jednak odkryto, że już u wspólnego przodka afrykańskich małp doszło do pojawienia się adaptacji, która poprawiła metabolizm alkoholu, co może wskazywać, że jego spożywanie ma naprawdę długą tradycję.
      Doktor Kimberley Hockings zauważa, że szympansy nie dzielą się przez cały czas pożywieniem. Zatem fakt, iż dzieliły się owocami zawierającymi alkohol daje do myślenia. Musimy sprawdzić, czy celowo szukają owoców z alkoholem, w jaki sposób go metabolizują i czy dzielenie się nimi może być wczesnym etapem rozwoju tradycji ucztowania. Jeśli tak, będzie to wskazywało, że wspólne biesiadowanie jest zaszyte głęboko w naszej ewolucji, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie w Linköping powstał akumulator, któremu można nadać dowolny kształt. Dzięki płynnym elektrodom można go będzie w dowolny sposób integrować z urządzeniami przyszłości. Tekstura materiału przypomina pastę do zębów. Można go będzie, na przykład, wykorzystać w drukarce 3D do wykonania akumulatora o dowolnym kształcie, mówi jeden z twórców nowatorskiego urządzenia, Aiman Rahmanudin.
      Ludzkość używa coraz więcej gadżetów i urządzeń elektronicznych. Coraz więcej z nich to urządzenia noszone na ciele, jak pompy insulinowe, rozruszniki serca, implanty słuchu, w przyszłości coraz więcej elektroniki będzie zintegrowanej z ubraniami. Jeśli to wszystko ma działać i nie przeszkadzać użytkownikowi w codziennym funkcjonowaniu, potrzebne są nowe rodzaje baterii.
      Baterie to największy składnik każdej elektroniki. Dzisiaj są to sztywne ciała stałe i dość nieporęczne. Jednak dzięki miękkim wygodnym bateriom możemy pozbyć niedogodności z nimi związanych. Można je będzie integrować w zupełnie inny sposób, niż obecnie, dodaje Rahmanudin.
      Chcąc uniknąć błędów innych zespołów pracujących nad elastycznymi akumulatorami, naukowcy ze Szwecji wykorzystali polimery oraz ligninę. Ich urządzenie może być ładowane i rozładowywane ponad 500 razy i zachowuje swoją pojemność. Może być też rozciągnięte na 2-krotność swojej oryginalnej długości i wciąż dobrze działa.
      Obecnie twórcy baterii pracują nad zwiększeniem napięcia. Nasza bateria nie jest doskonała. Sama koncepcja jest dobra, ale musimy poprawić wydajność. Obecnie możemy uzyskać 0,9 V. Szukamy innych związków chemicznych, by zwiększyć napięcie. Jedną z rozważanych przez nas opcji jest wykorzystanie cynku lub manganu, które powszechnie występują w skorupie ziemskiej, dodaje Rahmanudin.
      Ze szczegółami nowej baterii można zapoznać się na łamach Science Advances.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Produkty pszczele – miód, pyłek i propolis – od tysiącleci używane są w ludowej medycynie. Nowoczesne metody naukowe pozwalają na zweryfikowanie ich skuteczności czy znalezienie nowych zastosowań. Pojawiło się już wiele badań dowodzących pozytywnego wpływu produktów pszczelich na gojenie ran. Jak jednak w praktyce zastosować miód czy propolis i udostępnić je jak największej liczbie ludzi? Z problemem tym zmierzyli się naukowcy z kilku tureckich uczelni wyższych.
      Na łamach Biofunctional Materials opublikowali oni artykuł Bee products loaded polymeric films as a potential dressing material for skin treatments. W ramach swoich badań przyjrzeli się czy i w jaki sposób właściwości produktów pszczelich zmieniają się, gdy zostaną zintegrowane z naturalnymi polimerami. Połączenie miodu, propolisu czy pyłku z chitosanem i żelatyną w celu stworzenia opatrunków, mogło przecież zmienić produkty pszczele tak, że stracą swoje pożądane właściwości.
      Z przeprowadzonych badań wynika, że najbardziej pożądaną cechą miodu w opatrunkach jest wysoka retencja wody, którą można wykorzystać podczas krótkotrwałego procesu regeneracji uszkodzonej skóry. Z kolei pyłek i propolis w biopolimerach wykazywały silne właściwości przeciwbakteryjne, a materiały wytworzone z ich użyciem były były trwałe i miały wysoką jakość, dzięki czemu nadawały się do produkcji materiałów biomedycznych. Tureccy naukowcy stwierdzili również, że można kontrolować ich uwalnianie z materiału, który je zawiera, co czyni je tym bardziej przydatnymi w leczeniu ran.
      Co więcej, zarówno chitosan jak i produkty pszczele mogą mieć kontakt z żywnością, a to oznacza, że pyłek czy propolis zintegrowane z chitosanem mogą posłużyć do produkcji opakowań w przemyśle spożywczym. Takie opakowania mogą być szczególnie przydatne do tych rodzajów żywności, które są szczególnie podatne na zepsucie pod wpływem bakterii, jak mięso czy sery.
      Trzeba tutaj podkreślić, że autorzy badań nie brali pod uwagę biokompatybilności polimerów z produktami pszczelimi, nie eksperymentowali z pakowaniem w nie żywności. Skupili się wyłącznie na aktywności biologicznej, morfologii, strukturze chemicznej, retencji wody czy przyleganiu takich materiałów do skóry. O tym, czy materiały takie można rzeczywiście zastosować w opatrunkach i opakowaniach, rozstrzygną inne badania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Guoliang Liu z Wydziału Chemii Virginia Polytechnic Institute and State University (Virginia Tech), opracował metodę przetwarzania plastików – od „kartonowych” pojemników na napoje, poprzez pojemniki na żywność i foliowe torebki – na mydło. Jego tajemnica polega na podgrzewaniu długichł łańcuchów polimerowych i ich gwałtownym chłodzeniu. Mamy tutaj więc do czynienia z tzw. upcyclingiem, czyli uzyskiwaniem z przetwarzanego przedmiotu produktu o wysokiej wartości. W tym przypadku są do surfaktanty, które może zamienić w mydło czy detergent. Bardzo często recykling wiąże się z downcyklingiem, gdy poddany mu przedmiot można zamienić na produkt o niższej wartości.
      Zamiana plastiku na mydło może być zaskakująca, ale oba te produkty mają wiele wspólnego na poziomie molekularnym. Struktura chemiczna polietylenu, jednego z najpowszechniej używanych tworzyw sztucznych, ma niezwykle podoba do struktury kwasów tłuszczowych używanych do produkcji mydła. Oba te materiały mają długie łańcuchy węglowe, jednak kwasy tłuszczowe mają na końcu łańcucha dodatkową grupę atomów.
      Guoliang Liu od dłuższego czasu uważał, że dzięki temu podobieństwu powinno się udać zamienić polietylen w kwas tłuszczowy do produkcji mydła. Pytanie brzmiało, jak podzielić długie łańcuchy polimerowe na krótsze, ale nie za krótkie, i zrobić to efektywnie. Jeśli by się to udało, można by z plastikowych odpadów o niskiej wartości uzyskać produkt o wysokiej wartości.
      Inspiracją dla naukowca stało się dymu z palącego się w kominku drewna.
      Drewno kominkowe składa się głównie z polimerów, jak celuloza. Jego spalanie rozrywa polimery na mniejsze łańcuchy, następnie na małe gazowe molekuły, które w końcu utleniają się do tlenku węgla. Jeśli podobnie przerwiemy molekuły polietylenu, ale przerwiemy proces zanim staną się one molekułami gazowymi, powinniśmy otrzymać krótkie łańcuchy podobne do molekuł polimerów, stwierdził. W swoim laboratorium wykorzystał termolizę z gradientem temperatury. Na dole urządzenia do termolizy panuje wystarczająco wysoka temperatura, by poprzerywać łańcuchy polimerowe, a na górze jest ono na tyle schłodzone, że proces przerywania łańcuchów nie zachodzi. Po termolizie naukowcy zebrali sadzę z góry pieca i okazało się, że zawiera ona woski. Potrzebnych było jeszcze kilka etapów obróbki chemicznej, w tym zmydlanie, by otrzymać pierwsze w historii mydło z plastiku.
      Cała procedura została przeanalizowana przez ekspertów od modelowania komputerowego, analiz ekonomicznych i innych dziedzin. Efektem prac jest artykuł opublikowany w Science. Nasze badania pokazują nowy sposób upcyclingu plastiku bez konieczności stosowania nowych katalizatorów czy złożonych procedur. To powinno zachęcić innych do opracowania kolejnych metod zamiany plastikowych odpadów na cenne produkty, mówi główny autor artykułu, Zhen Xu.
      Co więcej, analizy wykazały, że tę samą metodę można wykorzystać podczas pracy z polipropylenem. Wraz z polietylenem stanowi od większość plastiku, z jakim mamy do czynienia w codziennym życiu. Dodatkową zaletą jest fakt, że metodę Liu można wykorzystać bez potrzeby oddzielania polietylenu od polipropylenu. Można je jednocześnie przetwarzać.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...