Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Drugie zderzenie gwiazd neutronowych. Para była zaskakująco masywna
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przed 10 laty 14 września 2015 roku interferometr LIGO zarejestrował pierwsze fale grawitacyjne wykryte przez człowieka (o ich odkryciu poinformowano 11 lutego 2016 roku). Ludzkość zyskała 3. sposób badania kosmosu, po falach elektromagnetycznych i promieniowaniu kosmicznym. Tym razem zaobserwowaliśmy zaginanie czasoprzestrzeni. Obecnie LIGO rutynowo wykrywa fale grawitacyjne. We współpracy z Virgo (Włochy) i KAGRA (Japonia) tworzy sieć LVK, która średnio co trzy dni rejestruje fale pochodzące z połączenia czarnych dziur. Teraz naukowcy z LVK zdobyli drugi w historii, i jednocześnie najdokładniejszy, dowód obserwacyjny, na prawdziwość teorii o powierzchni czarnych dziur Stephena Hawkinga. W przełomowych badaniach brała udział duża grupa polskich uczonych z Centrum Astronomicznego im. Mikołaja Kopernika, Uniwersytetu Warszawskiego, Uniwersytetu Jagiellońskiego, Polskiej Akademii Nauk, Uniwersytetu w Białymstoku i Narodowego Centrum Badań Jądrowych.
W 1971 roku Stephen Hawking zaprezentował teorię, zgodnie z którą całkowita powierzchnia horyzontu zdarzeń czarnej dziury nigdy się nie zmniejsza. Pierwsze zarejestrowane przez człowieka fale grawitacyjne pochodziły z wydarzenia GW150914, które po analizie okazało się połączeniem czarnych dziur o masach 29 i 36 mas Słońca. W ich wyniku powstała nowa czarna dziura o masie 62 mas Słońca, a brakujące masa 3 Słońc została wyemitowana w postaci promieniowania grawitacyjnego. Gdy Stephen Hawking się o tym dowiedział, skontaktował się z naukowcami z LIGO i zapytał, czy wykryte zjawisko potwierdza jego teorię o powierzchni. Wówczas jednak naukowcy nie byli w stanie odpowiedzieć na to pytanie. Dopiero w 2019 roku, już po śmierci Hawkinga, stworzono odpowiednie techniki analizy danych. Dwa lata później, w 2021 roku ostatecznie stwierdzono, że obserwacje wykazały, iż powierzchnia wynikowej czarnej dziury się nie zmniejszyła. Dokładność obserwacji wynosiła 95%, czyli około 2 sigma. To zbyt mało, by mówić o odkryciu.
Obecnie nadeszło silniejsze potwierdzenie prawdziwości teorii Hawkinga. Znaleziono je w danych z interferometru LIGO – Virgo i KAGRA były akurat wyłączone – który 14 stycznia bieżącego roku zaobserwował sygnał GW250114. Dostarczył on najsilniejszych dowodów na prawdziwość twierdzenia Hawkinga. ANaliza wykazała, że całkowita powierzchnia obu czarnych dziur, które się połączyły, wynosiła 240 000 km2, a powierzchnia nowo powstałej czarnej dziury to około 400 000 km2. Tym razem dokładność obserwacji wynosi 99,999%. Szczegóły badań opublikowano na łamach Physical Review Letters.
Ten wyjątkowy pomiar był możliwy dzięki 10 latom udoskonaleń interferometru. Prace były prowadzone w obu wykrywaczach, w stanach Waszyngton i Louisiana. Nie wiem, co będzie za 10 lat, ale poprzednie 10 lat to czas olbrzymiego wzrostu czułości LIGO. Dzięki temu nie tylko wykrywamy coraz więcej nowych czarnych dziur, ale zdobywamy coraz bardziej szczegółowe dane na ich temat, mówi profesor Katerina Chatziioannou.
Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, zatem cała ziemia jest ściskana lub rozciągana o około szerokość atomu. LIGO składa się z dwóch bliźniaczych urządzeń umieszczonych w odległości około 3000 kilometrów od siebie. Każde z urządzeń ma kształt litery L o ramionach długości 4 kilometrów. Na końcach ramion znajdują się 40-kilogramowe lustra umieszczone dokładnie w tej samej odległości od lasera. W ich stronę wystrzeliwana jest wiązka lasera, która odbija się od luster i wraca do detektorów. Jeśli w trakcie ostrzeliwania luster laserem przez Ziemię przejdzie fala grawitacyjna, zmieni się odległość pomiędzy jednym z luster a laserem. Zatem światło w obu ramionach przebędzie różną drogę. Między promieniami światła dojdzie do interferencji, a badając ją naukowcy mogą mierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczy, by wykryć zmiany długości ramion interferometru spowodowane przejściem fali grawitacyjnej.
Wykorzystanie dwóch identycznych urządzeń położonych w dużej odległości od siebie ma na celu eliminację części zakłóceń powodowanych źródłami na Ziemi (może zostać zakłócone jedno urządzenie, ale drugie położone tak daleko nie odczuje zakłócenia lub będzie to odczuwalne w inny sposób). Duża odległość pozwala też na dodatkowe upewnienie się, że przeszła fala grawitacyjna. Fale te rozchodzą się bowiem z prędkością światła, dokładnie więc wiemy, jakie może być opóźnienie zarejestrowanego sygnału pomiędzy jednym a drugim urządzeniem. Dzięki odległości dzielącej urządzenia możemy też dokonywać lepszej triangulacji, czyli lepiej określać źródło sygnału, a włączenie do tej sieci Virgo i KAGRA dodatkowo zwiększa precyzję pomiarów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Najdłuższa i najbardziej szczegółowa w historii symulacja połączenia się dwóch gwiazd neutronowych pokazuje, jak powstają czarne dziury i rodzą się dżety. Autorami symulacji są członkowie międzynarodowego zespołu badawczego, na czele którego stali naukowcy z Instytutu Fizyki Grawitacyjnej im. Maxa Plancka. Jej stworzenie wymagało 130 milionów godzin pracy procesorów, a symulacja – tak szczegółowo, jak to możliwe – obrazuje to, co dzieje się w ciągu... 1,5 sekundy.
Łączące się gwiazdy neutronowe są dla astronomów niezwykle interesującym celem badań. W procesie tym dochodzi do emisji fal grawitacyjnych, neutrin i fal elektromagnetycznych.
Podczas jej przygotowywania twórcy symulacji wzięli pod uwagę zjawiska opisane w ogólnej teorii względności, oddziaływanie strumieni neutrin czy magnetohydrodynamikę. Wszystkie je możemy rejestrować i badać, pogłębiając naszą wiedzę o kosmosie.
A dzięki symulacjom komputerowym możemy lepiej zrozumieć pochodzenie i powstawanie tych sygnałów.
Uczeni wykorzystali do symulacji japoński superkomputer Fugaku, który w latach 2020–2022 był najpotężniejszym superkomputerem na świecie. W każdym momencie tworzenia symulacji jednocześnie pracowało od 20 do 80 tysięcy procesorów. Dzięki tak potężnej mocy obliczeniowej możliwe było uwzględnienie zjawisk opisanych przez ogólną teorię względności, emisji neutrin czy zjawisk magnetohydrodynamicznych.
Symulacja opisuje dwie gwiazdy neutronowe, o masie 1,25 i 1,65 razy większej od masy Słońca, które okrążają się 5-krotnie. Wówczas pojawiają się pierwsze sygnały, które potrafimy badań na Ziemi, czyli fale grawitacyjne. Następnie dochodzi do połączenia gwiazd, w wyniku czego powstaje czarna dziura otoczona dyskiem materiału. W dysku, w wyniku efektu dynama magnetohydrodynamicznego i obrotu czarnej dziury, dochodzi do szybkiego wzmocnienia pola magnetycznego. To powoduje odpływ energii wzdłuż osi obrotu czarnej dziury.
Sądzimy, że to ten odpływ energii napędzany przez pole magnetyczne, zasila rozbłyski gamma. To by się zgadzało z tym, co wiemy z dotychczasowych obserwacji i wzbogaca naszą wiedzę o zjawiskach zachodzących podczas łączenia się gwiazd neutronowych, stwierdził Masaru Shibata, dyrektor wydziału Obliczeniowej Astrofizyki Relatywistycznej. Dalsza część symulacji pokazała spodziewaną emisję neutrin, dostarczyła informacji na temat ilości materii wyrzucanej w przestrzeń międzygwiezdną oraz wskazała na możliwość pojawienia się kilonowej, w wyniku której wytwarzane są wielkie ilości metali ciężkich.
To, czego się właśnie dowiedzieliśmy o tworzeniu się dżetów i dynamice pola magnetycznego jest kluczowe do zinterpretowania i zrozumienia łączenia się gwiazd neutronowych oraz towarzyszących temu zjawisk, dodaje Shibata.
Źródło: Jet from Binary Neutron Star Merger with Prompt Black Hole Formation
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.