Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wielkie deszcze spowodowały Wielki głód

Rekomendowane odpowiedzi

W czasie Wielkiego głodu (1315–1317) w Europie zmarły miliony ludzi. To jeden z wielkich kryzysów, które nastąpiły na Starym Kontynencie w XIV wieku. Wieku awiniońskiej niewoli papieży, wojny stuletniej, Czarnej Śmierci czy pojawienia się Imperium osmańskiego.

Z historycznych zapisków wiemy, że okres Wielkiego głodu to czas olbrzymich opadów deszczu, którym towarzyszyło zniszczenie zbiorów, gwałtowny wzrost cen i kanibalizm. To mocna wskazówka, iż przyczyną klęski były nadmierne opady, jednak nie wiadomo było, jak się mają one do średnich historycznych, ani na jakim obszarze doszło do zwiększonych opadów.

Dowiedzieliśmy się tego dopiero teraz, dzięki pracy naukowców z Lamont-Doherty Earth Observatory i Columbia University. Naukowcy ocenili, że lata 1314–1316 były piątym najbardziej wilgodnym okresem w ciągu 700 lat. Dzięki takim badaniom możemy umiejscowić Wielki głód w kontekście długoterminowych trendów klimatycznych oraz dowiedzieć się, jak nadmierne opady wpływały na ówczesne rolnictwo. Zwykle bowiem większa uwagę badacze przywiązują do okresów susz. Zwykle gdy myślimy o ekstremalnych wydarzeniach hydroklimatycznych, mamy na myśli susze. Tutaj jednak mieliśmy do czynienia z powodzią, stwierdza Jason Smerdon, paleoklimatolog z Lamont-Doherty Earth Observatory.

Smerdon i jego zespół przeanalizowali Old World Drought Atlas, bazę danych z rekonstrukcją corocznych zmian wilgotności w Europie. Baza zostala stworzona na podstawie badań pierścieni drzew ze 106 miejsc w Europie. W latach suchych pierścienie drzew są węższe, w latach wilgotnych – szersze. Takie informacje możemy następnie doprecyzowywać dokładnie mierząc, jak obecnie przyrastają pierścienie drzew w reakcji na dokładnie zmierzona ilość opadów.

Dane z pierścieni drzew pozwalają na zdobycie informacji, jakich nie znajdziemy w historycznych zapiskach. Z zapisków nie dowiemy się bowiem, jak ilość opadów ma się do średnich z okresów wcześniejszych i późniejszych. Nie wiadomo też gdzie było bardziej wilgotno, gdyż zapiski z wielu obszarów nie zachowały się.

W ten sposób zespół Smerdona stwierdził, że lata 1314–1316 były piątym najbardziej wilgotnym okresem z lat 1290–2000, a najwięcej opadów było w roku 1315. Badania przyniosły też istotną informację dla współczesności. W Europie dominującym zjawiskiem meteorologicznym jest oscylacja północnoatlantycka (NAO). Działa ona na osi północ-południe, jeśli więc dochodzi do dużych opadów w Norwegii, prawdopodobnie dojdzie do nich również we Włoszech. Jednak, jak obecnie widzimy, w czasie Wielkiego głodu katastrofalne opady dotknęły tylko północ Europy. We Włoszech czy Hiszpanii panowała susza. To zaś oznacza, że dominujący wzorzec może ulec zmianie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      O Surtsey, najmłodszej wyspie Europy, opowiada nam Dr Paweł Wąsowicz – biolog, botanik, dyrektor Działu Botaniki w Islandzkim Instytucie Nauk Przyrodniczych (Natural Science Institute of Iceland). Od 2012 roku prowadzi badania naukowe na Islandii, koncentrując się na taksonomii, biogeografii i ekologii roślin, w szczególności na zagadnieniach związanych z migracjami roślin, sukcesją na terenach wulkanicznych oraz wpływem gatunków obcych na rodzimą florę.
      Od 2013 roku jest stałym członkiem corocznych wypraw badawczych na Surtsey – najmłodszą wyspę wulkaniczną Europy. Jest jedynym Polakiem i jednym z nielicznych naukowców na świecie, którzy prowadzą bezpośrednie badania terenowe na tej wpisanej na listę światowego dziedzictwa UNESCO wyspie.
      Dr Wąsowicz jest autorem i współautorem licznych publikacji naukowych z zakresu botaniki, ekologii wysp, biologii inwazji i biogeografii roślin. Wyniki jego badań były publikowane w renomowanych międzynarodowych czasopismach naukowych. Uczestniczy w międzynarodowych projektach badawczych i odgrywa aktywną rolę w pracach eksperckich związanych z ochroną przyrody, zwłaszcza w zakresie zarządzania gatunkami obcymi w Europie.
      Poza działalnością naukową dr Wąsowicz zajmuje się popularyzacją wiedzy przyrodniczej – współpracuje z mediami, tworzy materiały edukacyjne oraz bierze udział w inicjatywach promujących ochronę środowiska na Islandii i poza jej granicami.
      Wkrótce będziemy obchodzili 62. rocznicę pojawienia się w Europie najmłodszej wyspy wulkanicznej. Może Pan przybliżyć nam historię Surtsey?
      Surtsey wynurzyła się z oceanu 14 listopada 1963 roku, około 32 km na południe od Islandii. Erupcja trwała aż do czerwca 1967 roku, wyrzucając na powierzchnię około 1,1 km3 lawy i materiałów piroklastycznych. Wyspa osiągnęła wtedy maksymalną powierzchnię 2,65 km2, lecz z powodu silnej erozji morskiej obecnie ma już tylko około 1,4 km2. Nazwę otrzymała na cześć Surtra, ognistego olbrzyma z nordyckiej mitologii. Od początku traktowano ją jako naturalne laboratorium, w którym można śledzić rozwój życia i ekosystemów na zupełnie nowym lądzie.

      ©Paweł Wąsowicz
      Roślinność pionierska w północnej części Surtsey. Na zdjęciu widoczne są m.in. Honckenya peploides, Mertensia maritima oraz Leymus arenarius – gatunki tworzące pierwsze zespoły roślinne na ubogiej w azot tefrze, tuż nad brzegiem oceanu. To właśnie one zapoczątkowują proces tworzenia się gleby i umożliwiają dalszą kolonizację wyspy przez inne organizmy. Wyspa natychmiast została objęta ochroną. Obejmuje ona, między innymi, zakaz wstępu. Przed czym lub kim wyspę należy chronić?
      Już w 1965 roku Surtsey objęto ścisłą ochroną – ustanowiono całkowity zakaz wstępu dla osób postronnych, by chronić ją przed wpływem człowieka. Celem było zachowanie wyspy jako miejsca, gdzie sukcesja pierwotna może przebiegać w pełni naturalnie. Badania są możliwe tylko po uzyskaniu specjalnego zezwolenia. Dzięki izolacji oraz ochronie Surtsey uznano w 2008 roku za obiekt Światowego Dziedzictwa UNESCO.
      Skąd na Surtsey rośliny? Jakimi drogami przybywają?
      Rośliny przybywają na wyspę na różne sposoby: unoszone przez wiatr, wodę morską, a przede wszystkim – przenoszone przez ptaki. Badania wykazały, że aż 75% gatunków dotarło dzięki ptakom, 11% przez wiatr, a 9% przez wodę. Nasiona przybywały na wyspę zarówno wewnątrz ptasich przewodów pokarmowych, jak i przyczepione do ich piór czy przyniesione w materiałach gniazdowych. Niektóre gatunki – jak Cakile maritima – dotarły dzięki morskim prądom i zakiełkowały na świeżej tefrze już w 1965 roku.

      ©Paweł Wąsowicz
      Mewa siodłata (Larus marinus) – największy gatunek mewy na świecie. Na Surtsey gatunek ten tworzy duże kolonie lęgowe i odgrywa kluczową rolę w rozwoju roślinności, dostarczając glebie substancji odżywczych poprzez odchody i resztki pokarmowe. Jakie gatunki dotychczas tam zidentyfikowano i jakie znaczenie ich pojawienie się ma dla samej wyspy oraz jej ekosystemu?
      Do 2024 roku potwierdzono obecność 58 gatunków roślin naczyniowych. Wczesna flora składała się z roślin nadmorskich, takich jak Leymus arenarius, Honckenya peploides czy Mertensia maritima. Obecność roślin umożliwiła rozwój gleby, a następnie osiedlanie się kolejnych organizmów. Wraz z rozwojem kolonii mew od połowy lat 80. XX w. liczba gatunków roślin gwałtownie wzrosła – dzięki nawożeniu przez ptaki i lepszym warunkom glebowym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dotychczas udało się zsekwencjonować genomy niewielu przedstawicieli gatunku Homo sapiens żyjących w Europie jednocześnie z neandertalczykami. Instytut Antropologii Ewolucyjnej im. Maxa Plancka poinformował, że jego naukowcy stali na czele międzynarodowej grupy badawczej, która zbadała najstarszy genom naszego gatunku. Materiał genetyczny został pobrany od siedmiu osób, które żyły pomiędzy 49 a 42 tysiące lat temu. Pochodził on ze stanowisk Ilsenhöhle w Ranis w Niemczech i Zlatý kůň w Czechach.
      Materiał należał do niewielkiej grupy spokrewnionych ludzi. Oddzieliła się ona od populacji, która około 50 tysięcy lat temu opuściła Afrykę, by ostatecznie zasiedlić cały świat. Mimo, że grupa ta oddzieliła się wcześnie, to w jej genomie widać domieszkę genów neandertalskich wspólnych dla wszystkich ludzi spoza Afryki. Domieszka ta pojawiła się 45–49 tysięcy lat temu, a więc znacznie później, niż dotychczas przypuszczano.

      Obecnie dysponujemy ograniczonym materiałem genetycznym najwcześniejszych H. sapiens zamieszkujących Europę. Z badań wiemy, że nasz gatunek przybył do Europy ponad 45 tysięcy lat temu i przez co najmniej 5 tysięcy lat mieszkał tutaj wspólnie z neandertalczykami. Wiemy też, że w Europie mieszkały co najmniej dwie genetycznie odmienne linie H. sapiens, reprezentowane przez szczątki znalezione w jaskiniach Zlatý kůň i Bacho Kiro w Bułgarii.

      Jaskinie Ilsenhöhle w Niemczech i Zlatý kůň w Czechach to jedne z najważniejszych w Europie stanowisk ze szczątkami wczesnych H. sapiens na Starym Kontynencie. W czeskiej jaskini znaleziono kompletną czaszkę kobiety żyjącej 45 tysięcy lat temu. Udało się pobrać materiał genetyczny i przeprowadzić badania. Jednak brak kontekstu sprawił, że osoby tej nie można było połączyć z żadną wcześniej zidentyfikowaną grupą.
      Z kolei w oddalonej o 230 kilometrów Ilsenhöhle występują ślady technokompleksu LRJ (Lincombian-Ranisian-Jerzmanowician) sprzed 45 tysięcy lat. LRJ to zespół europejskich kultur archeologicznych, do którego należy m.in. kultura jerzmanowicka. Przez długi czas technokompleks ten wiązano z neandertalczykami. Dopiero niedawne odkrycie licznych kości wskazało, że jest on dziełem H. sapiens. Jednak przeprowadzone wówczas badania mitochondrialnego DNA nie pozwoliły na określenie związku szczątków z Ranis z innymi szczątkami człowieka współczesnego.
      Teraz uczeni zsekwencjonowli genom jądrowy szczątków z Ilsenhöhle i stwierdzili, że należały one do co najmniej sześciu osób. Rozmiary kości wskazują, że dwie z nich to niemowlęta. Trzy osoby były płci męskiej, trzy – żeńskiej. Wśród nich były matka i córka oraz inni krewni. Przeprowadzono też ponowną analizę czaszki kobiety z Czech. Ku naszemu zdumieniu odkryliśmy, że kobieta z jaskini Zlatý kůň jest krewną piątego lub szóstego stopnia dwóch osób z Ranis. To oznacza, że mieszkańcy czeskiej jaskini byli częścią tej samej szeroko rozumianej rodziny, co mieszkańcy jaskini w Ranis i prawdopodobnie również wytwarzali narzędzia należące do kompleksu LRJ, stwierdzają badacze.
      Jedna z kości z Ranis zachowała się wyjątkowo dobrze, pozwalając na przeprowadzenie wysokiej jakości sekwencjonowania. Kość, należąca do mężczyzny oznaczonego jako Ranis13, i czaszka z jaskini Zlatý kůň, pozwoliły na uzyskanie najstarszego genomu człowieka współczesnego wysokiej jakości. Szczegółowe badania ujawniły, że osoby te miały ciemną skórę i włosy oraz brązowe oczy. Porównanie fragmentów DNA odziedziczonych od tego samego przodka pozwoliło na stwierdzenie, że początkowa populacja, do której należały osoby z jaskiń Ilsenhöhle i Zlatý kůň składała się z kilkuset osób. Rozproszyły się one po dużym terenie i nie pozostawiły śladów genetycznych ani u późniejszych Europejczyków, ani żadnych szeroko rozpowszechnionych populacji.
      Członkowie populacji Zlatý kůň/Ranis mieszkali w Europie wraz z neandertalczykami. Jednak w ich genomie nie znaleziono śladów świeżej domieszki neandertalskich genów, a jedynie domieszkę starszą. Tymczasem współcześni H. sapiens posiadają w genomie również ślady bliższych współczesności przypadków mieszania się genów. Może to oznaczać, że linia Zlatý kůň/Ranis mogła przybyć do Europy inną drogą lub obszar ich pobytu nie nakładał się w znaczący sposób z terenami zamieszkanymi przez neandertalczyków.
      Mimo, że Zlatý kůň/Ranis nie pozostawili po sobie śladów genetycznych u współczesnych ludzi, to łączą nas z nimi geny wprowadzone przez neandertalczyków przed 45–49 tysiącami lat. To z jednej strony wskazuje, że jeszcze wówczas na terenie Europy żyła spójna grupa migrantów z Afryki, z drugiej zaś – że każde znalezione poza Afryką szczątki H. sapiens starsze niż 50 tysięcy lat mogą nie być częścią tej populacji, która krzyżowała się z neandertalczykami, a której geny można znaleźć obecnie na całym świecie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Latem 2022 z powodu upałów zmarły w Europie 68 593 osoby. Badacze z Barcelońskiego Instytutu Zdrowia Globalnego poinformowali, że gdyby nie globalne ocieplenie, nie doszłoby do śmierci 38 154 z tych osób. Uczeni zauważyli też, że liczba zgonów z powodu globalnego ocieplenia była szczególnie duża wśród kobiet oraz osób w wieku 80 lat i starszych.
      Punktem wyjścia do obecnych badań, była wcześniejsza praca, w ramach której – wykorzystując dane o zgonach i temperaturze w 35 krajach Europy – eksperci stworzyli model epidemiologiczny pozwalający na określenie liczby zgonów spowodowanych wysokimi temperaturami.
      Teraz wykorzystali dane na temat średnich anomalii temperaturowych w latach 1880–2022 i oszacowali dla każdego badanego regionu wzrost temperatury spowodowany ociepleniem. Na tej podstawie określili, jakie temperatury panowałyby na badanych obszarach, gdybyśmy nie mieli do czynienia z ociepleniem klimatu. W końcu uruchomili swój model epidemiologiczny, by sprawdzić, do jakiej liczby zgonów by doszło w scenariuszu, w którym ocieplenie nie występuje.
      Badania wykazały, że – w przeliczeniu na milion mieszkańców – liczba zgonów z powodu upałów, które można przypisać ociepleniu, jest dwukrotnie wyższa na południu kontynentu niż w pozostałej części Europy. Z modelu wynika, że stres cieplny spowodowany globalnym ociepleniem w szkodzi głównie kobietom – z powodu globalnego ocieplenia zmarło ich 22 501 z 37 983 wszystkich zgonów kobiet spowodowanych upałami – osobom w wieku 80 lat i więcej (23 881 zgonów z ogólnej liczby 38 978).
      Wzrost temperatur spowodowany przez ocieplenie klimatu w mniejszym stopniu dotyka mężczyzn (14 426 z 25 385 zgonów) oraz osób w wieku 64 lat i mniej (2702 z 5565 zgonów).
      Nasze badania pokazują, do jakiego stopnia globalne ocieplenie wpływa na zdrowie publiczne. Niemal we wszystkich krajach obserwujemy wzrost liczby zgonów spowodowanych upałami. Nie wszyscy są jednak narażeni w takim samym stopniu, mówi Thessa Beck.
      Latem 2022 roku z powodu upałów najwięcej osób – 18 758 – zmarło we Włoszech. Globalne ocieplenie spowodowało śmierć 13 318 z nich, co stanowi 71% wszystkich zgonów. W Hiszpanii zmarło 11 797 osób, z czego z powodu ocieplenia 7 582 (64%). Na kolejnym miejscu znajdziemy Niemcy (9675 zgonów, 5746 (59%) z powodu ocieplenia). Następne na liście są Francja, Grecja, Wielka Brytania i Rumunia. Polska uplasowała się na 8. miejscu tabeli. W naszym kraju upały zabiły 1808 osób, z czego 1218 zgonów badacze przypisali globalnemu ociepleniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych.
      Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie.
      Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie.
      Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago.
      Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko.
      RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak.
      W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony.
      Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów.
      Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim.
      Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu.
      Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal.
      Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze.
      Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów.
      Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce.
      Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Historia Kaspara Hausera, zwanego „sierotą Europy”, rozpalała w XIX wieku wyobraźnię całej Europy. Ten niezwykle zagadkowy mężczyzna, jego tajemnicze życie i śmierć od dwóch wieków są inspiracją dla artystów. O pochodzeniu Kaspara nie wiadomo nic pewnego, mimo że jego postać to jedna z najgłośniejszych tajemnic XIX wieku. Popularna teoria głosi, że był synem księcia Badenii, który jako dziecko został podmieniony i przetrzymywany w izolacji, by wprowadzić na tron boczną linię rodziny książęcej. Na łamach iScience opisano właśnie wyniki badań materiału genetycznego Kaspara.
      W maju 1828 roku na ulicach Norymbergi pojawił się młody nędznie ubrany w podartych butach i z poranionymi stopami. Kontakt z nim był bardzo trudny. Zainteresował się nim lokalny szewc. Przy chłopaku znaleziono dwa listy. Jeden adresowany był do rotmistrza Fryderyka von Wesseninga, dowódcy szwadronu szwoleżerów. Ich autor stwierdzał, że jest ubogim parobkiem i zajmował się chłopakiem od 1812 roku, gdy ten, jako niemowlę, został oddany mu pod opiekę. Chłopak miał umieć czytać i pisać, ale ponoć rzadko wychodził z domu. Autor prosi Wesseninga, by przyjął chłopca do wojska lub go zabił.
      Wessening nie chciał mieć ze znajdą nic wspólnego, więc ten trafił na policję. Tam znaleziono przy nim drugi list, napisany rzekomo przed 16 laty przez matkę chłopca. Była tam informacja, że chłopiec nazywa się Kaspar, a jego matka pisze, że nie może się nim opiekować i prosi, by w wieku 17 lat oddać go od regimentu, w którym służył jego ojciec.
      Cała sprawa od początku była podejrzana. Widać było, że oba listy napisała ta sama osoba, tym samym atramentem na papierze pochodzącym z tej samej wytwórni. Charakter pisma i styl wypowiedzi nie pasowały też do osoby z niskich klas społecznych.
      Chłopak powtarzał tylko, że chce być kawalerzystą, jak jego ojciec. Policjanci dali mu papier, na którym ten napisał „Kaspar hauser”. Stał się więc znany pod takim nazwiskiem.
      Znajda przez jakiś czas był przetrzymywany w areszcie. Miał tam zachowywać się jak niedorozwinięte dziecko, jadł tylko chleb i wodę. Stało się o nim głośno, odwiedzały go wycieczki ciekawskich. Po kilku tygodniach zamieszkał z rodziną strażnika więziennego. Był okazem zdrowia, blada skóra wskazywała na brak kontaktu ze słońcem. Badający go lekarz stwierdził, że chłopiec jest dzikim dzieckiem, które wychowywano w izolacji od ludzi.
      Kaspar budził zaciekawienie gawiedzi. Wszystko zmieniło się, gdy ktoś dopatrzył się jego podobieństwa do zmarłego przed laty księcia Badenii Karola Ludwika. Pierworodny syn księcia zmarł jako niemowlę w 1812 roku. To zgadzało się z rokiem urodzenia Kaspara zawartym w liście od rzekomej matki. W czasie, gdy w Norymberdze pojawił się Hauser, na tronie Badenii zasiadał wujek Karola Ludwika, ostatni męski przedstawiciel tej samej linii rodu. Ludwik I był bezdzietny, a po jego śmierci tron miał objąć syn Karola Fryderyka, który z powodu mezaliansu popełnionego przez ojca, został wyłączony z sukcesji.
      Śmierć dziecka Karola Ludwika była więc na rękę tej gałęzi rodziny, z której pochodził Karol Fryderyk. Pojawiły się pogłoski, że to żona Karola Fryderyka stała za podmienieniem syna Karola Ludwika na martwe niemowlę. I oto prawdziwy następca tronu, w osobie Kaspara Hausera, pojawił się na ulicach Norymbergi. Oliwy do ognia dolewały pogłoski o porwanym księciu, które od dawna krążyły w Niemczech.
      Kaspar Hauser wkroczył więc w świat polityki. Nagle zaczął nadrabiać opóźnienia intelektualne, spisywał wspomnienia ze swojego uwięzienia w ciemnej piwnicy. Jego historia stawała się coraz bardziej podejrzana. Gdy zainteresowanie nim przygasło, znaleziono go w piwnicy z raną ciętą głowy. Miał zostać zaatakowany przez nieznanego napastnika. Dzieje Kaspara są pełne zwrotów akcji i niezwykle podejrzane. Kilka lat później doszło do kolejnego – rzekomego a może i nie – zamachu na jego życie. Trzy dni później Kaspar Hauser zmarł i wciąż pozostaje tajemnicą.
      Tajemnicę tę próbuje się rozwiązać od 200 lat. Już w 1996 roku przeprowadzono pierwsze badania genetyczne i stwierdzono, że Kaspar nie był powiązany z domem panującym w Badenii. Jednak sposób przeprowadzenia badań – wykorzystanie tylko 1 próbki – został skrytykowany przez ekspertów. Od tamtej pory prowadzono liczne badania genetyczne. Dawały one sprzeczne wyniki, a autentyczność niektórych próbek była kwestionowana.
      Teraz rozwiązanie zagadki Kaspara Hausera wziął się niemiecko-austriacki zespół naukowy, w którego pracach wzięła udział profesor Turi King. To ona przed 10 laty zidentyfikowała pochowane pod parkingiem szczątki Ryszarda III, jedynego króla Anglii, którego miejsce pochówku pozostawało nieznane. Badacze wykorzystali nowoczesne metody analityczne oraz różne próbki przypisywane Kasparowi Hauserowi. Były to włosy Kaspara z czasów gdy żył oraz zachowane po jego śmierci oraz krew mężczyzny pobrana z jego ubrań przechowywanych w poświęconym mu muzeum. Upewnili się, że mitochondrialne DNA próbek było identyczne i w ten sposób – po raz pierwszy – udowodnili ich autentyczność. Jednocześnie dowiedli, że mDNA jest wyraźnie różne od mDNA rodu Baden. Tym samym obalili hipotezę, jako Kaspar Hauser pochodził z linii książęcej.
      Pracowałam nad dwoma przypadkami identyfikacji osób potencjalnie pochodzących z rodów królewskich: Ryszarda III i Kaspara Hausera. W pierwszym z tych przypadków okazało się, że mamy do czynienia z królem. W drugim udowodniliśmy, że to nie książę, mówi profesor King. Uczona dodaje, że wciąż nie wiadomo, kim był Kaspar Hauser. Jego mDNA wskazuje na pochodzenie z zachodniej części Eurazji. Jednak dokładniejszego regionu geograficznego nie udało się ustalić.
      Kaspar Hauser wciąż pozostaje więc tajemnicą.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...