Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Badania na myszach, których wyniki ukazały się właśnie w piśmie JNeurosci, wskazują, że dieta suplementowana ciałami ketonowymi (ich estrami) może ochronić neurony przed śmiercią w przebiegu choroby Alzheimera (ChA).

Na wczesnych etapach ChA mózg staje się nadmiernie pobudzony, być może przez utratę hamujących GABA-ergicznych neuronów wstawkowych (interneuronów). Ponieważ interneurony potrzebują więcej energii w porównaniu do innych neuronów, wydają się bardziej podatne na obumieranie podczas ekspozycji na beta-amyloid (wcześniej wykazano, że beta-amyloid uszkadza mitochondria, czyli centra energetyczne komórki, oddziałując na sirtuinę 3, SIRT3).

Zespół dr Aiwu Cheng z amerykańskiego Narodowego Instytutu Starzenia genetycznie obniżył poziom SIRT3 w mysim modelu alzheimera. Zaobserwowano, że gryzonie z niskim poziomem sirtuiny 3 cechował o wiele wyższy wskaźnik śmiertelności (zarówno samce, jak i samice umierały przedwcześnie przed 5. miesiącem życia) oraz nasilone obumieranie interneuronów. Zwierzęta te miały też gwałtowne drgawki; porównań dokonywano do standardowego mysiego modelu ChA oraz do myszy z grupy kontrolnej.

Co istotne, okazało się, że podawanie suplementowanej karmy sprawiało, że gryzonie z obniżonym poziomem SIRT3 miały mniej drgawek i rzadziej umierały. Dieta ta zwiększała także poziom sirtuiny 3.

Jak tłumaczą akademicy, zastosowana dieta zwiększała ekspresję SIRT3, zapobiegała zgonom związanym z drgawkami oraz degeneracji neuronów GABA-ergicznych. To potwierdza, że nasilona utrata neuronów GABA-ergicznych oraz nadmierna pobudliwość sieci neuronalnych u myszy z tej grupy jest wywołana spadkiem poziomu sirtuiny 3, a zjawiska te można zniwelować, zwiększając ekspresję SIRT3.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
      Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
      Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
      Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
      Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
      Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
      W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uniwersytet im. Adama Mickiewicza w Poznaniu (UAM), Politechnika Poznańska oraz neurolodzy i psychiatrzy chcą opracować nową, bezinwazyjną metodę diagnozowania choroby Alzheimera na wczesnym etapie. Jak podkreślono na stronie UAM, w celu przeprowadzenia badań pilotażowych w projekcie naukowcy planują zgromadzić grupę około 50 osób zagrożonych rozwojem choroby, a także podobną grupę kontrolną.
      Choroba Alzheimer przez dekady może rozwijać się bez żadnych objawów. Tymczasem, jak w przypadku większości chorób, wczesne rozpoznanie ma olbrzymie znaczenie dla rokowań. Im zatem szybciej schorzenie zostanie zdiagnozowane, tym większa szansa na wyleczenie czy powstrzymanie dalszych postępów choroby. Wszyscy mamy nadzieję, że prędzej czy później będziemy dysponować skutecznym lekiem, jednak może się okazać, że największą barierą w jego zastosowaniu będzie dostęp do wczesnej diagnostyki - obecnie drogiej i trudno osiągalnej, mówi profesor Jędrzej Kociński z UAM.
      Naukowcy zapraszają więc do wzięcia udziału w bezpłatnych anonimowych badaniach wszystkich, którzy podejrzewają, że coś złego dzieje się z ich pamięcią, oraz osoby po 50. roku życia bez zaburzeń pamięci, ale w rodzinach których są lub były osoby z wczesnym otępieniem (czyli takie, u których rozwinęło się one przed 65. rokiem życia). W badaniach nie mogą wziąć udział osoby z wyraźnymi objawami otępienia, ani z już zdiagnozowaną chorobą Alzheimera. Szczegółowe informacje o projekcie znajdziemy na stronach Alzheimer Prediction Project, a chęć udziału w badaniu można zgłosić pisząc na adres kierownika projektu, doktora Marcina Górniaka, lekarz.marcin.gorniak[at]gmail.com.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na całym świecie na epilepsję cierpi około 50 milionów osób, co czyni ją jedną z najbardziej rozpowszechnionych chorób neurologicznych. Około 70% z nich mogłoby nie doświadczać napadów padaczkowych, gdyby zostali odpowiednio zdiagnozowani i leczeni. Niestety, w przypadku części osób leki nie działają. Polsko-włoski zespół z Wydziału Fizyki UW oraz Istituto Neurologico Carlo Besta przeprowadził badania, które mogą pomóc lepiej zrozumieć mechanizm powstawania napadów padaczkowych, a tym samym przyczynić się do powstania doskonalszych leków.
      Przez dekady sądzono, że napad epilepsji rozwija się, gdy dochodzi do pobudzenia kolejnych neuronów. Jednak w latach 80. ubiegłego wieku naukowcy stwierdzili, że napad padaczkowy nie wymaga komunikacji pomiędzy synapsami. Można ją zablokować, a napad będzie trwał nadal. Później, podczas kolejnych eksperymentów, uzyskano wyniki sugerujące, że indukcja i synchronizacja napadów padaczki może mieć przyczyny nie synaptyczne, ale jonowe, mówi współautor najnowszych badań, doktor Piotr Suffczyński z Wydziału Fizyki UW.
      Neurony są komórkami naładowanymi elektrycznie. Wewnątrz nich i na zewnątrz zgromadzone są jony dodatnie i ujemne, tworzące potencjał spoczynkowy błony komórkowej. Gdy jony przepływają przez błonę, neurony zmieniają potencjał i generują impulsy elektryczne. Do komórki wpływają wówczas jony sodu, odpływają z nich jony potasu. Później, by przywrócić równowagę, pompy sodowo-potasowe wpompowują potas i wypompowują sód.
      Już w latach 70. XX wieku pojawiła się hipoteza, zgodnie z którą podczas szybkiego wyzwalania neuronów dochodzi do dużego nagromadzenia sodu wewnątrz komórek i potasu na zewnątrz. Duża liczba jonów potasu zwiększa potencjał błony komórkowej, coraz bardziej pobudza neurony, co prowadzi do jeszcze większego gromadzenia się potasu. W ten sposób powstaje napad padaczkowy. W tamtym czasie [hipoteza ta – red.] została odrzucona, ponieważ naukowcy nie byli w stanie wyjaśnić, w jaki sposób dochodzi do zakończenia napadu. Dziś wiemy, że oprócz pomp sodowo-potasowych odpowiadają za to m.in. komórki glejowe w mózgu, które nie tylko odżywiają neurony, ale mają za zadanie usuwać nadmiar potasu z przestrzeni wokół neuronów, wyjaśnia doktor Suffczyński.
      Naukowcy z Uniwersytetu Warszawskiego wykorzystali więc dane doświadczalne do stworzenia pierwszego kompletnego komputerowego modelu napadu padaczkowego. Składa się on z 1 komórki hamującej, 4 pobudzających, komórek glejowych i otoczenia neuronów. Dzięki niemu udało się nie tylko wykazać, że napad padaczki może rozpocząć się od wyładowań neuronów hamujących w mózgu, ale również dowiedzieliśmy się, jak ustaje napad padaczkowy.
      Gdy dochodzi do nierównowagi sodowo-potasowej pompy sodowo-potasowe zaczynają pracować bardziej intensywnie. W każdym cyklu przenoszą dwa jony potasu do komórki i trzy jony sodu z komórki. Zatem w cyklu dochodzi do usunięcia jednego jonu dodatniego i obniżenia potencjału elektrycznego komórki. W ten sposób mamy do czynienia z ujemnym przesunięciem potencjału błony i zatrzymania napadu. Nasze wyniki pokazują, że napad padaczkowy jest procesem fizjologicznym wywołanym destabilizacją poziomu potasu w mózgu. Wskazuje to cele dla nowych strategii terapeutycznych, dodaje Suffczyński.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy ze Scripps Research oraz Massachusetts Institute of Technology (MIT) dokonali odkrycia, które może wyjaśniać, dlaczego to kobiety dwukrotnie częściej zapadają na chorobę Alzheimera. Na łamach Science Advances opublikowali oni artykuł, w którym informują, że w mózgach kobiet, które zmarły na alzheimera, znaleziono znacznie więcej szczególnie szkodliwej, chemicznej zmienionej formy białka dopełniacza C3 niż w mózgach mężczyzn. Wykazali też, że estrogen, którego wytwarzanie znacząco spada w czasie menopauzy, chroni kobiety przed tworzeniem się tej formy białka.
      Układ dopełniacza to zespół około 60 białek surowicy i płynów tkankowych, które biorą udział w obronie przeciwzakaźnej organizmu. Jest to jeden z najstarszych mechanizmów odporności nieswoistej. Odpowiada on między innymi za zabijanie komórek bakteryjnych, stymulację rozwoju pamięci immunologicznej czy usuwanie potencjalnie szkodliwych cząsteczek własnych powstających w wyniku śmierci komórkowej. Białko dopełniacza C3 jest bardzo starym białkiem. Występowało już u szkarłupni i osłonic 700 milionów lat temu.
      Nasze odkrycie sugeruje, że chemiczna modyfikacja tego składnika układu dopełniacza napędza chorobę Alzheimera i może – przynajmniej częściowo – wyjaśniać, dlaczego schorzenie to dotyka głównie kobiety, mówi profesor neurologii Stuart Lipton.
      Zespół Liptona bada biochemiczne i molekularne podstawy chorób neurodegeneracyjnych. To oni w przeszłości odkryli proces S-nitrolizacji, któremu poddawane jest białko C3. To reakcja, w czasie której tlenek azotu (NO) przyłącza się do atomu siarki w białku, tworząc zmodyfikowaną formę białka SNO-białko. Modyfikacje białek przez niewielkie grupy atomów są czymś naturalnym i zwykle prowadzą do aktywacji lub dezaktywacji funkcji danego białka. Z przyczyn technicznych S-nitrolizacja jest procesem trudniejszym do badania niż podobne zjawiska.
      Kierowani przez Liptona uczeni wykorzystali nowatorskie metody wykrywania S-nitrolizacji do oceny poziomu protein, które uległy modyfikacji w mózgach 40 zmarłych. Połowa z mózgów pochodziła od osób, które zmarły na chorobę Alzheimera, połowa od osób, które na nią nie cierpiały. Obie grupy były równo podzielone pomiędzy mózgi kobiet i mężczyzn.
      W sumie naukowcy znaleźli 1449 różnych proteiny, które uległy S-nitrolizacji. Wśród tych, które najczęściej ulegały takiej modyfikacji, było kilkanaście łączonych z chorobą Alzheimera, w tym białko dopełniacza C3. Okazało się, że poziom SNO-C3 – czyli białka dopełniacza C3, które uległo S-nitrolizacji – był w mózgach kobiet zmarłych na Alzheimera ponad 6-krotnie wyższy, niż w mózgach mężczyzn, którzy zmarli z tego samego powodu.
      Naukowcy od ponad 30 lat wiedzą, że w mózgach chorych na alzheimera występuje podwyższony poziom białek dopełniacza i innych markerów stanu zapalnego. Badania wykazały też, że białka dopełniacza mogą pobudzić komórki odpornościowe mózgu – mikroglej – do niszczenia synaps.
      Dlaczego jednak SNO-C3 miałoby częściej występować u kobiet z Alzheimerem? Od dawna pojawiają się dowody sugerujące, że estrogen chroni mózgi kobiet. Dlatego też Lipton i jego zespół wysunęli hipotezę, że estrogen chroni mózgi pań szczególnie przed S-nitrolizacją białka C3, a ochrona ta znika wraz z menopauzą. Przeprowadzili więc badania na hodowanych w laboratorium komórkach ludzkiego mózgu. Wykazali w ten sposób, że po zmniejszeniu poziomu estrogenu dochodzi do aktywacji enzymu wytwarzającego NO, co pociąga za sobą wzrost liczby SNO-C3.
      Od dawna było tajemnicą, dlaczego kobiety są bardziej narażone na chorobę Alzheimera. Myślę, że nasze badania to waży element układanki wyjaśniającej tę kwestię, stwierdza profesor Lipton. W kolejnym etapie badań uczony chce sprawdzić, czy zastosowanie środków usuwających modyfikację SNO doprowadzi do ograniczenia rozwoju patologii w tkance mózgowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Początki choroby Alzheimera wciąż stanowią tajemnicę dla nauki. Może bowiem zaczynać się on wcześnie i przez lata powoli rozwijać nie dając żadnych widocznych objawów. Dlatego też wciąż nie poznano wszystkich mechanizmów leżących u podstaw tej choroby.
      Naukowcy z Tufts University i Uniwersytetu w Oksfordzie poinformowali właśnie na łamach Journal of Alzheimer's Disease, że wirus ospy wietrznej i półpaśca (VZV) może aktywować wirusa opryszczki (HSV). Zwykle HSV-1, jeden z głównych wariantów tego wirusa, pozostaje uśpiony w neuronach, jeśli jednak zostanie aktywowany, prowadzi co akumulacji białka tau i beta amyloidu oraz utraty funkcji przez neurony. To zaś są cechy charakterystyczne rozwoju choroby Alzheimera.
      Uzyskane przez nas wyniki pokazują jedną z możliwych dróg rozwoju alzheimera, kiedy to infekcja VZV wywołuje stan zapalny prowadzący do aktywacji HSV w mózgu. Wykazaliśmy istnienie związku pomiędzy VZV i aktywacją HSV-1, ale możliwe, że istnieją jeszcze inne czynniki zapalne, które mogą prowadzić do aktywowania HSV-1 i choroby Alzheimera, mówi Dana Cairns z Tufts University.
      Profesor David Kaplan z Wydziału Inżynierii Biomedycznej jest jednym z twórców hipotezy o udziale wirusa opryszczki w rozwoju choroby Alzheimera. Ciężko pracowaliśmy, by zdobyć dowody na to, że HSV zwiększa ryzyko rozwoju alzheimera. Wiedzieliśmy, że istnieje korelacja pomiędzy HSV-1 a chorobą Alzheimera. Niektórzy specjaliści sugerowali, że jakiś udział ma też VZV, ale nie wiedzieliśmy, jaka jest sekwencja wydarzeń. Myślę, że teraz zdobyliśmy dowody ją opisujące, mówi Kaplan.
      WHO ocenia, że nosicielami HSV-1 jest około 3,7 miliarda osób poniżej 50. roku życia. Również VZV jest niezwykle rozpowszechniony, a 95% jego nosicieli zaraża się przed 20. rokiem życia.
      Naukowcy, chcąc opisać związek przyczynowo-skutkowy pomiędzy tymi wirusami a chorobą Alzheimera, odtworzyli środowisko tkanki mózgowej tworząc jej model z kolagenu i białek jedwabiu. Tak uzyskaną gąbczastą strukturę wypełnili neuronalnymi komórkami neuronalnymi, które utworzyły neurony i komórki gleju. Odkryli dzięki temu, że gdy neurony zostaną zarażone VZV nie dochodzi do tworzenia się białek tau i beta amyloidu, a neurony normalnie działają. Jednak gdy w neuronach znajduje się uśpiony HSV-1, to po wystawieniu neuronów na działanie VZV dochodzi do aktywacji HSV-1 i dramatycznego wzrostu ilości białek tau i beta amyloidu.
      Widzimy tutaj działanie dwóch powszechnie rozpowszechnionych wirusów, które zwykle są nieszkodliwe, ale z naszych badań wynika, że gdy nowa ekspozycja na VZV doprowadzi do aktywizacji HSV-1, może to spowodować problemy, stwierdza Cairns.
      Nie można wykluczyć, że istnieją jeszcze inne mechanizmy powodujące chorobę Alzheimera. Takie czynniki jak uraz głowy, otyłość czy spożywanie alkoholu również mogą prowadzić do aktywizacji HSV w mózgu, dodaje uczona.
      Naukowcy zaobserwowali, że w tkance zainfekowanej VZV pojawia się zwiększona ilość cytokin, skądinąd zaś wiadomo, że VZV wywołuje stan zapalny w mózgu. To zaś może aktywizować HSV, co dodatkowo zwiększy stan zapalny i doprowadzi do pojawienia się tau i beta amyloidu. Badania naukowców z Tufts i Oksfordu mogą też wyjaśniać, dlaczego szczepienia przeciwko VZV są powiązane z mniejszym ryzykiem rozwoju choroby Alzheimera.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...