-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Warmińsko-Mazurskiego w Olsztynie (UWM) pracują nad rozwiązaniami technologicznymi, które pozwolą na hodowlę i wykorzystanie glonów Chlorella na dużą skalę. Zespół skupia się na ich zdolności do pochłaniania dwutlenku węgla i możliwości wykorzystania olejów zawartych w komórkach alg. Jak podkreślono w komunikacie uczelni, już teraz wiadomo, że glony mogą kumulować go o wiele więcej niż inne znane nam rośliny oleiste.
Uzyskane dotąd wyniki są na tyle obiecujące, że rozpoczęły się poszukiwania zakładów przemysłowych do testów. Prowadzone są już pierwsze rozmowy, uczeni zgłosili też swój pomysł do programu ogłoszonego przez Grupę Azoty.
Pożądane właściwości Chlorelli
Glony mają ogromny potencjał. My skupiliśmy się na tych właściwościach Chlorelli, które mogłyby zostać z powodzeniem wykorzystane w przemyśle energetycznym, czyli produkcji biooleju oraz zdolności wychwytywania dwutlenku węgla - tzw. biosekwestracji – wyjaśnia prof. dr. hab. inż. Marcin Zieliński.
Podstawowym celem zespołu jest stworzenie warunków do hodowli w jak najkrótszym czasie i możliwie najniższym kosztem jak największej ilości alg, które będą wychwytywać maksymalnie dużo dwutlenku węgla i przy okazji zgromadzą jak najwięcej biooleju.
Potencjalne zastosowania biooleju
Olej wytwarzany przez glony można wykorzystać w przemyśle spożywczym, a także jako produkt prozdrowotny/suplement diety i biopaliwo. Aby z tego oleju mogło powstać biopaliwo, konieczne jest przeprowadzenie różnych procesów, w wyniku których zostanie uzyskany biodiesel, ale z naszych badań wynika, że jest to jak najbardziej możliwe - wyjaśnia dr Paulina Rusanowska.
Czas na testy w zakładach przemysłowych
Opracowane rozwiązania zostały już przetestowane w warunkach laboratoryjnych. Teraz naukowcy szukają zakładów przemysłowych, które byłyby zainteresowane ich sprawdzeniem. Zależy nam na współpracy z firmami, które np. produkują spaliny i chcą ograniczyć emisję CO2. Glony można wykorzystać do oczyszczania spalin z dwutlenku węgla, a przy okazji uzyskać także inne cenne produkty, jak np. bioolej czy nawóz organiczny z alg - zachwala prof. Zieliński.
Dr Rusanowska dodaje, że na tym etapie można już ze sporą dozą pewności powiedzieć, że możliwe jest opłacalne hodowanie Chlorelli w dużym zakładzie przemysłowym. Należy się, oczywiście, liczyć z wkładem początkowym, bo konieczne jest wybudowanie reaktorów do hodowli oraz zapewnienie światła i pożywki na bazie fosforu i azotu. Wierzymy jednak, że zaproponowane przez nas rozwiązania zafunkcjonują i taka inwestycja będzie się opłacać.
« powrót do artykułu -
By KopalniaWiedzy.pl
Poczta Polska wyemitowała znaczek przedstawiający legendę o Kraku i smoku wawelskim. Projekt Macieja Jędrysika bierze udział w konkursie na najpiękniejszy znaczek w Europie. W tym roku emisja EUROPA dotyczy „Baśni i legend” (Stories and Myths).
Na znaczku w średniowiecznej stylizacji przedstawiono smoka wawelskiego i szewczyka Skubę z wypchanym siarką baranem. W tle widać Wzgórze Wawelskie z zamkiem i smoczą jamę. Na wydanej w komplecie kopercie Pierwszego Dnia Obiegu (ang. FDC, od first day cover) znajduje się wizerunek szewca Skuby z baranem na tle pokonanego smoka. Powyżej umieszczono obrazek Kraka z niewiastą.
Nakład wynosi 171 tys. sztuk. Wartość znaczka o wymiarach 40,5x40,5 mm to 4,5 zł.
Głównym celem corocznych emisji znaczków „Europa” od 66 lat jest próba pokazania wspólnych korzeni, kultury, historii i celów narodów Europy. Każdorazowo walory te, wydawane przez operatorów pocztowych skupionych w stowarzyszeniu PostEurop, promują przede wszystkim filatelistykę i pokazują, że współpraca pomiędzy europejskimi pocztami jest rzeczą naturalną. To zawsze jest bardzo ciekawa podróż przez historię i tradycje naszego kontynentu. To także od lat jedne z najbardziej pożądanych znaczków wśród filatelistów - podkreślił wiceprezes Poczty Polskiej Wiesław Włodek.
Warto przypomnieć, że Poczta Polska zdobyła złoty medal w konkursie filatelistycznym EUROPA 2021. Autorem zwycięskiego znaczka z rysiem euroazjatyckim jest Bożydar Grozdew. Tematem edycji były „Zwierzęta zagrożone wyginięciem”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wywiadu udzielił nam profesor Grzegorz Pietrzyński z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego, którego zespół dokonał najbardziej precyzyjnych w historii pomiarów odległości do Wielkiego Obłoku Magellana.
1. Czy astronomia/astrofizyka mają jakieś bezpośrednie przełożenie na życie codzienne? Czy badania kosmosu, poza oczywistymi przykładami satelitów komunikacyjnych i meteorologicznych, mają znaczenie dla ludzi żyjących tu i teraz czy też są przede wszystkim badaniami wybiegającymi w przyszłość (tzn. mogą mieć ewentualnie znaczenie w przyszłości) i poszerzającymi naszą wiedzę, ale nie rozwiązującymi obecnych praktycznych problemów.
Astronomia należy do tzw nauk podstawowych, których wyniki nie są bezpośrednio komercjalizowane. Proszę zauważyć, że opracowanie jakiejkolwiek nowej technologii wymaga odpowiedniego postępu w badaniach podstawowych. Dlatego wszystko co dziś mamy zawdzięczamy naukom podstawowym.
2. Co rodzi w umyśle naukowca pytanie "Ciekawe, jaka jest dokładna odległość między Ziemią, a Obłokiem Magellana"?
Takie pytanie rodzi kolejne - jak zmierzyć taką odleglość ?
3. Ile czasu zajęło wyznaczenie aktualnej odległości do Obłoku (wliczając w to obserwacje, symulacje, wyliczenia)?
Naszej grupie Araucaria zajęło to około 12 lat. W międzyczasie mierzyliśmy odległości do Wielkiego Obłoku Magellana używając innych technik (gwiazd red clump, Cefeid, RR Lyrae, etc). Jednak od początku wiadomo było, że układy zaćmieniowe mają największy potencjał bardzo dokładnego pomiaru odległości do tej galaktyki.
4. Jak wygląda proces i jakie instrumenty zostały wykorzystane?
Proces był długi i bardzo złożony. W skrócie: w opariu o dane fotometryczne zgromadzone przez zespół Optical Gravitational Lensing Experiment znaleziono najlepsze kandydatki do dalszych badań. Następnie przez okolo 8 lat w ramach projektu Araucaria obserwowaliśmy widma wybranych systemów za pomoca 6,5-metrowego teleskopu Magellan w Las Campanas Observatory, wyposażonego w spektrograf MIKE oraz 3,6-metrowego teleskopu w La Silla, ESO, wyposażonego w spektrograf HARPS. Dodatkowo wykonaliśmy pomiary jasności naszych układów w bliskiej podczerwieni używając instrumentu SOFI dostępnego na 3,5-metrowym teleskopie NTT, ESO, La Silla. Po obróbce otrzymanych obrazów wykonano odpowiednie pomiary.
5. W jaki sposób dokładniejszy pomiar odległości od najbliższego Obłoku przełoży się na skalę kosmiczną?
Wszystkie pomiary odległości do galaktyk wykonuje się względem Wielkiego Obłoku Magellana. Dlatego pomiar odległości do WOM definiuje bezpośrednio punkt zerowy całej kosmicznej skali odległości.
6. Co umożliwi uzyskanie jeszcze dokładniejszego wyniku? Lepszy kandydat (para analizowanych gwiazd podwójnych)?
Trudno wyobrazić sobie jeszcze lepsze układy podwójne do pomiaru odleglosci do WOM. Największym źródłem błędu jest zależność pomiędzy temperaturą gwiazdy a jej rozmiarami kątowymi. Jej dokładność wynosi obecnie około 2%. Nasz zespół prowadzi badania mające na celu dokładniejsze skalibrowanie tej zależności. Spodziewamy się, że w niedalekiej przyszłości uda nam się zmierzyć odleglość do WOM z dokładnością około 1%.
7. Zawsze mnie intrygowało to, że w mediach, a i na oficjalnych portalach prezentowane są artystyczne wizje gwiazd i planet, które co prawda spełniają swoje zadanie przed typowym odbiorcą, ale faktycznie przecież często jest to zlepek kilku lub jeden piksel zdjęcia. Nie potrafię sobie wyobrazić jak stąd wyciągnąć informacje o rozmiarze, masie, orbicie, temperaturze takich ciał. Jak dla mnie to daleko trudniejsze niż próba odczytania Hubblem napisu "Made in USA" na Curiosity. W jaki sposób z takich kilku pikseli można cokolwiek powiedzieć o obserwowanym obiekcie?
Oczywiście nie jesteśmy w stanie rozdzielić tych obiektów. W przypadku układów zaćmieniowych badając zmiany blasku (zaćmienia to efekt czysto geometryczny) oraz widma (z nich wyznaczymy predkości gwiazd na orbicie) w oparciu o proste prawa fizyczne jesteśmy w stanie wyznaczyć parametry fizyczne gwiazd. Jest to klasyczna metoda stosowana od dawna w astronomii. Aby jej użyć nie musimy rozdzielać obrazów gwiazd wchodzacych w skład danego układu podwójnego.
8. Czy rodowisko naukowców astronomów ma w naszym kraju problemy z finansowaniem i rozwijaniem projektów?
Oczywiscie tak! Z mojego punktu widzenia jest obecnie dużo różnych źródeł finansowania, więc najlepsze projekty mają duże szanse na finansowanie. Dużo gorzej jest z realizacją i rozwojem projektów.Tysiące bezsensownych przepisów, rozdęta do granic absurdu biurokracja, brak wyobraźni i dobrej woli urzędników. To tylko niektóre czynniki, które sprawiają, że wykonanie ambitnego projektu naukowego w Polsce jest niezmiernie trudne.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ocieplenie klimatu może już w przyszłej dekadzie wpłynąć na globalne uprawy kukurydzy i pszenicy, informują naukowcy z NASA na łamach Nature Food. To wcześniej niż dotychczas sądzono. Przy scenariuszu zakładającym utrzymującą się wysoką emisję dwutlenku węgla do końca wieku można spodziewać się spadku produkcji kukurydzy nawet o 24%, przy jednoczesnym wzroście produkcji pszenicy dochodzącym do 17%.
Naukowcy wykorzystali najnowsze modele klimatyczne oraz modele rozwoju upraw, uwzględnili w nich projektowane zmiany temperatury, opadów oraz koncentracji dwutlenku węgla. Modele wykazały, że w ocieplającym się klimacie coraz trudniej będzie uprawiać kukurydzę w tropikach, ale powinien zwiększyć się zasięg występowania pszenicy.
Nie spodziewaliśmy się tak znaczących zmian w porównaniu z poprzednimi tego typu projekcjami, które zostały wykonane w roku 2014, mówi główny autor badań Jonas Jägermeyr z NAA i Columbia University. Szczególnie zaskakujący jest olbrzymi spadek produkcji kukurydzy. Spadek o 20% może mieć poważne implikacje w skali całej planety, stwierdza uczony.
Na potrzeby badań naukowy wykorzystali pięć modeli klimatycznych CMIP6. Każdy z nich w nieco inny sposób przedstawia reakcję klimatu Ziemi na dwutlenek węgla. Następnie dane z tych symulacji zostały użyte w roli danych wejściowych dla 12 modeli upraw opracowanych w ramach projektu AgMIP. Modele te pokazują, jak w skali globu rośliny uprawne reagują na zmiany temperatury, opadów czy koncentrację CO2 w atmosferze. W efekcie uzyskano 240 modeli opisujących, jak do końca wieku mogą wyglądać uprawy kukurydzy, pszenicy, soi oraz ryżu.
Symulacje uwzględniały wyłącznie zmiany klimatu, nie brały pod uwagę dopłat do upraw, zmiany technik uprawy czy wprowadzanie nowych bardziej odpornych odmian. Zjawiska te są przedmiotem intensywnych badań i eksperci chcą je uwzględnić w przyszłych symulacjach.
Symulacje dotyczące upraw soi oraz ryżu wykazały, że w niektórych miejscach dojdzie do spadku produkcji, jednak w skali globalnej różnice między modelami były na tyle duże, że nie udało się wyciągnąć z nich jakichś wiążących wniosków. Znacznie jaśniejszy obraz uzyskano odnośnie kukurydzy i pszenicy.
Kukurydza uprawiana jest na całym świecie, a znaczną jej część uprawia się w pobliżu równika. W zawiązku ze znacznym wzrostem temperatur należy spodziewać się dużych spadków produkcji w Ameryce Północnej i Środkowej, Afryce Zachodniej, Azji Centralnej, Brazylii i w Chinach. Z kolei pszenica, która dobrze rośnie w temperaturach umiarkowanych, może zwiększyć swoje zasięgi. Można spodziewać się wzrostu jej produkcji w północnych częściach USA oraz w Kanadzie, na północy Chin, w Azji Centralnej, na południu Australii i w Afryce Wschodniej.
Badacze zauważają, że temperatura to nie jedyny czynnik decydujący o plonach. Wyższa koncentracja dwutlenku węgla w atmosferze ma do pewnego stopnia pozytywny wpływ na fotosyntezę i retencję wody, zwiększa wydajność, ale dzieje się to kosztem zubożenia roślin o składniki odżywcze. Prowadzone już wcześniej eksperymenty wykazały, że zboża uprawiane w warunkach zwiększonej obecności CO2 tracą proteiny, a w innych roślinach ubywa żelaza i cynku. Przed trzema laty informowaliśmy o badaniach, z których wynikało, że utrata składników odżywczych przez rośliny uprawne spowoduje, że niedobory protein pojawią się u dodatkowych 150 milionów ludzi, a niedobory cynku dotkną dodatkowych 150-200 milionów ludzi. Ponadto około 1,4 miliarda kobiet w wieku rozrodczym i dzieci, które już teraz żyją w krajach o wysokim odsetku anemii, utracą ze swojej diety około 3,8% żelaza.
Ponadto podniesiona koncentracja CO2 ma większy pozytywny wpływ na pszenicę niż na kukurydzę. Problemem mogą być jednak zmieniające się wzorce opadów oraz częstotliwość i czas trwania susz oraz fal upałów. Wyższe temperatury wydłużą też sezon upraw i przyspieszą dojrzewanie roślin.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.