Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W grudniu bieżącego roku zostanie zamkniętych jeden z największych emiterów dwutlenku węgla w historii USA. Elektrownia węglowa Navajo Generating Station w latach 2010–2017 wyrzuciła do atmosfery niemal 135 milionów ton CO2. Rocznie jest to odpowiednik emisji pochodzącej z 3,3 miliona samochodów osobowych. Żadna z elektrowni zamkniętych w ostatnich latach w USA nie mogła poszczycić się równie niechlubnym rekordem.

To jednak nie jedyna wielka elektrownia, która zostaje zamknięta. Również do końca bieżącego roku Amerykanie wyłączą zakład Bruce Mansfield w Pennsylvanii, który w latach 2010–2017 wyemitował niemal 123 miliony ton zanieczyszczeń. Zakończy też pracę elektrownia Paradise w stanie Kentucky. Dwa z jej trzech bloków energetycznych zamknięto w 2017 roku, ostatni zostanie wyłączony w przyszłym roku. W latach 2010–2017 elektrownia ta wyemitowała 102 miliony ton CO2.

Bardziej opłacalne są elektrownie na gaz naturalny oraz energię odnawialną. Jeszcze 5 lat temu jedynie elektrownie węglowe starego typu były nieopłacalne. Obecnie nieopłacalna jest każda elektrownia węglowa, a ich koniec to tylko kwestia czasu, mówi Dan Bakal z organizacji non-profit Ceres, która wspomaga biznes w przechodzeniu na bardziej ekologiczne źródła energii.
Dzięki rozwojowi technologii pozyskiwania energii ze źródeł odnawialnych oraz niskim cenom gazu naturalnego w USA od kilku lat zamykane są kolejne elektrownie węglowe. Do niedawna jednak proces ten dotykał mniejszych starszych i w mniejszym stopniu wykorzystywanych zakładów, więc zmniejszenie emisji nie było tak spektakularne jak obecnie.

W roku 2015 w USA zamknięto elektrownie węglowe o łącznej mocy 15 GW. To 5% całkowitej mocy generowanej wówczas w USA z węgla. Rok 2015 jest wciąż rekordowy, pod względem łącznej mocy wyłączonych elektrowni węglowych. Jednak zamknięcie tych zakładów spowodowało umiarkowany spadek emisji. W okresie6 lat poprzedzających zamknięcie elektrownie te wyemitowały łącznie 261 milionów ton CO2. Z kolei w ubiegłym roku zamknięto elektrownie o łącznej mocy 14 GW, ale zakłady te wyemitowały w ciągu sześciu lat aż 511 milionów ton dwutlenku węgla. O ile więc w pierwszym przypadku łączna roczna emisja zamkniętych elektrowni wynosiła średnio 43 miliony ton, to już średnia dla elektrowni zamkniętych w roku ubiegłym wynosi 83 miliony ton/rok. W bieżącym roku spadki będą jeszcze bardziej spektakularne.

U.S. Energy Information Administration spodziewa się, że w bieżącym roku wyłączone zostaną elektrownie węglowe o łącznej mocy niemal 8 GW. To nieco ponad połowa łącznej mocy elektrowni zamkniętych w roku 2015. Tymczasem średnia roczna emisja z elektrowni, które będą zamknięte w roku bieżącym wynosi 55 milionów ton.

John Larsen z firmy konsultingowej Rhodium Group zauważa, że do zamykania elektrowni węglowych przyczyniają się również zaostrzające się regulacje dotyczące jakości powietrza oraz odpływ klientów, którzy wolą korzystać z innych źródeł energii.
W przypadku Navajo Generating Station oba te czynniki odgrywają znaczenie. Jeden z bloków energetycznych nie spełnia przepisów federalnych dotyczących emisji, więc planowano jego zamknięcie, jeden z sześciu udziałowców elektrowni pozbył się w niej udziałów, a drugi planuje to zrobić, a jej największy klient już poinformował władze elektrowni, że ma zamiar kupować energię taniej na rynku hurtowym. Wszystkie te czynniki przypieczętowały los elektrowni, której moc wynosi 2,25 GW.

Z czasem rośnie średnia wielkość zamykanej elektrowni węglowej. Obecnie pozostało już niewiele małych elektrowni. Gdy już rynek zostanie wyczyszczony ze starych niewydajnych elektrowni, logicznym jest, że następnie przyjdzie kolej na większe zakłady i będzie to miało większy wpływ na klimat, dodaje Larsen.

Nie należy się jednak spodziewać, że w najbliższym czasie masowo będą zamykane wielkie amerykańskie elektrownie węglowe. Te, które pozostały mają zainstalowane wszystkie wymagane prawem urządzenia oczyszczające, więc nie wisi nad nimi niebezpieczeństwo niespełnienia norm oraz dobrze sobie radzą przy obecnych cenach energii ze źródeł alternatywnych. Jednak, jak zwracają uwagę analitycy, ostatnie wydarzenia pokazują, że mamy do czynienia z trendem, przed którym elektrownie węglowe nie mają się jak bronić.

Mike O'Boyle z organizacji Energy Innovation zwraca uwagę, że ostatnio zamykane są wielkie elektrownie w takich stanach jak Arizona, Kentucky czy Pennsylvania. To nie polityka klimatyczna doprowadziła do ich zamknięcia. Po prostu z czasem elektrownie węglowe stają się coraz droższe w utrzymaniu.

Niestety, musimy sobie zdawać też sprawę z faktu, że zamykanie elektrowni węglowych nie musi oznaczać zmniejszenia emisji przez sektor energetyczny. Wręcz przeciwnie. W 2018 roku po raz pierwszy od wielu lat emisja z sektora produkcji energii wzrosła, gdyż zwiększyło się zapotrzebowanie na energię, co pociągnęło za sobą wzrost emisji z gazu naturalnego.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy pracujący nad Global Carbon Project, informują, że w bieżącym roku emisja CO2 ze spalania paliw kopalnych osiągnie rekordowo wysoki poziom. Z szacunków wynika, że do końca bieżącego roku ludzkość, spalając paliwa kopalne, wyemituje do atmosfery 37,4 miliardów ton dwutlenku węgla. To o 0,8% więcej niż w roku ubiegłym. Do tego należy dodać emisję związaną ze zmianami w użytkowaniu gruntów (np. wycinkę lasów), z której emisja wyniesie 4,2 miliarda ton. W sumie więc tegoroczna antropogeniczna emisja dwutlenku węgla osiągnie 41,6 miliarda ton, czyli o miliard ton więcej, niż w roku ubiegłym.
      W ciągu ostatniej dekady emisja ze spalania paliw kopalnych rosła, a z użytkowania gruntów zmalała aż o 20%, dzięki czemu średni poziom emisji utrzymywał się mniej więcej na tym samym poziomie. W bieżącym roku jest jednak inaczej. Rośnie zarówno emisja z paliw, jak i ze zmian użytkowania gruntu. W tym drugim przypadku jest to w znacznej mierze spowodowane przez susze, które pogarszają emisję ze zdegradowanych przez człowieka lasów.
      Pomimo rosnącej emisji autorzy raportu wykazują umiarkowany optymizm. Mówią, że po raz pierwszy widać wyraźnie, iż zmniejszanie wycinki lasów w ostatnich dekadach przynosi efekty, a coraz większy udział energii odnawialnej zarówno w energetyce, jak i transporcie, pokazuje, że szczyt zużycia paliw kopalnych jest coraz bliżej. Wciąż jednak nie wiadomo, jak odległy jest moment, gdy użycie paliw kopalnych zacznie spadać.
      Z przeprowadzonych szacunków wynika, że w roku bieżącym – w porównaniu z rokiem ubiegłym – emisja CO2 z węgla wzrośnie o 0,2%, z ropy naftowej o 0,9%, a z gazu o 2,4%. Udział tych paliw w emisji będzie wynosił, odpowiednio 41%, 32% i 21%. Uczeni przewidują, że emisja Chin, które odpowiadają obecnie za 32% emisji światowej, wzrośnie o 0,2%, chociaż możliwy jest też niewielki spadek. USA (13% globalnej emisji) zmniejszą swoją emisję o 0,6%. Indie (8% emisji CO2), wyemitują w bieżącym roku o 4,6% więcej niż w ubiegłym, a emisja UE (7%) zmniejszy się o 3,8%. Cała reszta świata wyemituje o 1,1% dwutlenku węgla więcej, niż w roku ubiegłym.
      Szacunki mówią też, że lotnictwo i transport morski, które emitują 3% całości CO2, a z których emisje nie są przypisywane do żadnego kraju, wyemitują o 7,8% więcej, ale wciąż będzie to o 3,5% mniej niż z czasów sprzed pandemii. Średni poziom CO2 w atmosferze w 2024 roku wyniesie 422,5 części na milion. To o 2,8 części na milion więcej niż w roku ubiegłym i o 52% więcej, niż w okresie przedprzemysłowym.
      Naukowcy zauważają też, że zjawisko El Niño doprowadziło do zmniejszenia absorpcji atmosferycznego CO2 przez ekosystemy w roku 2023, jednak sytuacja wkrótce powinna wrócić do normy. Lądy i oceany wciąż pochłaniają około połowy CO2 emitowanego przez człowieka.
      Uczeni z Global Carbon Budget uważają, że obecnie istnieje 50% ryzyko, że już za 6 lat każdy kolejny rok będzie o co najmniej 1,5 stopnia Celsjusza cieplejszy niż w okresie preindustrialnym. Stwierdzają również, że niemal skończył się czas, by powstrzymać globalne ocieplenie na poziomie poniżej 1,5 stopnia Celsjusza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Oceany pochłaniają około 26% dwutlenku węgla emitowanego przez człowieka. Są więc niezwykle ważnym czynnikiem zmniejszającym nasz negatywny wpływ na atmosferę. Większość tego węgla – około 70% – wykorzystuje fitoplankton i inne organizmy żywe. Gdy one giną, resztki ich ciał opadają w postaci przypominającej płatki śniegu. Ten zawierający węgiel „śnieg” zalega na dnie, jest przykrywany osadami i pozostaje bezpiecznie zamknięty na bardzo długi czas, nie trafiając z powrotem do atmosfery. Jednak badania, których wyniki ukazały się właśnie na łamach Science wskazują, że proces ten nie wygląda tak prosto, jak byśmy chcieli.
      Grupa naukowców z Uniwersytetu Stanforda, Woods Hole Oceanographic Institution oraz Rutgers University zbudowała specjalny mikroskop, potocznie nazwany Gravity Machine, który pozwala badać mikroorganizmy i inne niewielkie elementy występujące w kolumnie wody o dowolnej długości. Okazało się, że „morski śnieg” nie opada na dno tak szybko, jak sądziła nauka. Mikroskop pozwolił na symulowanie zachowania „śniegu” w środowisku naturalnym i okazało się, że „płatki śniegu” ciągną za sobą śluzowe warkocze, która spowalniają ich opadanie. Czasem warkocze te całkowicie uniemożliwiają opadnięcie i „śnieg” pozostaje zawieszony w górnych częściach kolumny wody. Żyjące tam organizmy mogą go pochłaniać i w procesie oddychania wydalić do wody znajdujący się tam węgiel, a to z kolei zmniejsza tempo pochłaniania przez ocean CO2 z atmosfery.
      Mikroskop, za pomocą którego prowadzono badania, wykorzystuje koło o średnicy kilkunastu centymetrów. Do koła naukowcy wlewali wodę pobraną w oceanie na różnych głębokościach. Koło się obracało, a obecne w wodzie mikroorganizmy mogły swobodnie opadać pod wpływem grawitacji. Dzięki ruchowi obrotowemu koła, mikroorganizmy mogły bez końca opadać, w ten sposób możliwe jest symulowanie opadania na dowolną odległość. Temperatura, oświetlenie i ciśnienie wewnątrz koła dobiera jest odpowiednio do symulowanej głębokości, na której „znajduje się” badana próbka. Jednocześnie to, co dzieje się w próbce jest bez przerwy monitorowane za pomocą mikroskopu.
      Dzięki takiej konstrukcji instrumentu badawczego zauważono, że poszczególne „płatki śniegu” tworzą, niewidoczną goły okiem, śluzowatą strukturę ciągnącą się na podobieństwo warkocza komety. Odkrycia warkocza dokonano, gdy do próbki dodano niewielkie mikrokoraliki, by zbadać, jak będą one przepływały wokół „płatków”. Zauważyliśmy, że koraliki utknęły w czymś niewidzialnym, co ciągnęło się za płatkami, mówi jeden z badaczy. Bliższe badania pokazały, że ten śluzowaty warkocz dwukrotnie wydłuża czas pobytu „płatków” w górnych 100 metrach kolumny wody.
      Odkrycie pokazuje, że proces pochłaniania węgla przez oceany jest bardziej złożony niż sądziliśmy. Jest jednak mało prawdopodobne, by oznaczało ono, że oceany pochłaniają mniej węgla, niż sądzimy. Ilość tego węgla została bowiem określona metodami empirycznymi, więc wpływ warkocza został - choć nieświadomie - uwzględniony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od 2001 roku globalna emisja CO2 z pożarów lasów wzrosła o 60%, a w przypadku niektórych regionów lasu borealnego wzrost ten wyniósł niemal 300%, alarmuje międzynarodowy zespół naukowy. Eksperci z Wielkiej Brytanii, Brazylii, Hiszpanii, USA i Holandii, pracujący pod kierunkiem uczonych z University of East Anglia, podzielili światowe lasy na 12 „piromów”, jednostek, na których wzorce pożarów lasów są napędzane przez podobne czynniki, jak działalność człowieka, zjawiska naturalne czy zmiany klimatyczne. Przeprowadzili jedne z pierwszych badań, które w skali globalnej porównują pożary lasów z pożarami innych miejsc.
      Naukowcy wykazali, że jeden z największych „piromów” znajdują się w lasach borealnych Eurazji i Ameryki Północnej. Tam emisja z pożarów zwiększyła się niemal 3-krotnie w ciągu ostatnich 23 lat. Znaczący wzrost pożarów lasów zaobserwowano w lasach poza tropikami. Przyczyniły się one do dodatkowej emisji 500 milionów ton CO2 rocznie, a centrum tej emisji przesuwa się na północ.
      Zwiększenie emisji z pożarów lasów wiązane jest z dwoma czynnikami. Pierwszy to coraz częstsze pojawianie się wielkich upałów i suszy, które sprzyjają powstawaniu pożarów. Czynnik drugi to bardziej bujna roślinność, która zapewnia paliwo pożarom. Oba trendy są znacznie bardziej widoczne na wyższych szerokościach geograficznych na północy, które ocieplają się około 2-krotnie szybciej od światowej średniej.
      Badania pokazały, że w ciągu ostatnich dwóch dekad nie tylko zwiększyła się częstotliwość pożarów, ale również stały się one bardziej intensywne. Współczynnik spalania węgla, za pomocą którego mierzy się intensywność pożarów, wzrósł w badanym okresie o 50%. Wzrost zasięgu i intensywności pożarów lasów doprowadził do znacznego zwiększenia emisji do atmosfery. Obserwujemy też zdumiewające przesuwanie się głównego regionu pożarów na północ. Tłumaczymy to coraz większym wpływem zmian klimatu na lasy borealne, mówi główny autor badań, doktor Matthew Jones z UEA. Jeśli chcemy ochronić najważniejsze ekosystemy leśne przed rosnącym zagrożeniem pożarowym, musimy ograniczyć globalne ocieplenie, a to pokazuje, jak ważne jest zmniejszenie emisji, dodaje.
      W wyniku zwiększającej się liczby pożarów, ich rosnącej intensywności i przesuwania się głównego pasa pożarów na północ, lasy poza tropikami emitują już o 500 milionów ton CO2 rocznie więcej niż przed 20 laty. To też oznacza, że dochodzi do coraz większego zachwiania równowagi pomiędzy ilością CO2 przechwytywanego z powietrza przez lasy, a ilością, jakie lasy emitują.
      Szybkie przesuwanie się pożarów na obszary poza lasami tropikalnymi to widoczny znak rosnącej wrażliwości lasów na pożary. Wiemy, że po bardzo intensywnych pożarach las się słabo odradza, więc obecnie specjaliści z coraz większym zainteresowaniem badają, jak zwiększenie intensywności pożarów będzie wpływało w najbliższych dekadach na możliwości przechwytywania dwutlenku węgla przez lasy, stwierdza Jones.
      Wzrost intensywności i liczby pożarów lasów zbiega sę ze zmniejszeniem pożarów tropikalnych sawann. Wcześniejsze badania wykazały, że od roku 2001 całkowity obszar zniszczony przez pożary (zarówno terenów leśnych, jak i poza lasami), zmniejszył się o 25%, a główną przyczyną spadku jest mniej pożarów sawann. To niepokojący trend, gdyż podczas pożarów lasów dochodzi do znacznie większej emisji szkodliwych substancji, co zagraża zdrowiu zarówno mieszkańców okolic, w których wybuchł pożar, jak o osób mieszkających dalej, gdzie wiatr zanosi dym z pożarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W miarę wzrostu globalnych temperatur drzewa będą emitowały więcej izoprenu, który pogorszy jakość powietrza, wynika z badań przeprowadzonych na Michigan State University. Do takich wniosków doszedł zespół profesora Toma Sharkeya z Plant Resilience Institute na MSU. Naukowcy zauważyli, że w wyższych temperaturach drzewa takie jak dąb czy topola wydzielają więcej izoprenu. Mało kto słyszał o tym związku, tymczasem jest to drugi pod względem emisji węglowodór trafiający do atmosfery. Pierwszym jest emitowany przez człowieka metan.
      Sharkey bada izopren od lat 70., kiedy był jeszcze doktorantem. Rośliny emitują ten związek, gdyż pozwala on im radzić sobie z wysoką temperaturą i szkodnikami. Problem w tym, że izopren, łącząc się z zanieczyszczeniami emitowanymi przez człowieka, znacznie pogarsza jakość powietrza. Mamy tutaj do czynienia z pewnym paradoksem, który powoduje, że powietrze w mieście może być mniej szkodliwe niż powietrze w lesie. Jeśli bowiem wiatr wieje od strony miasta w stronę lasu, unosi ze sobą tlenki azotu emitowane przez elektrownie węglowe i pojazdy silnikowe. Tlenki te trafiając do lasu wchodzą w reakcję z izoprenem, tworząc szkodliwe i dla roślin, i dla ludzi, aerozole, ozon i inne związki chemiczne.
      Sharkey prowadził ostatnio badania nad lepszym zrozumieniem procesów molekularnych, które rośliny wykorzystują do wytwarzania izoprenu. Naukowców szczególnie interesowała odpowiedź na pytanie, czy środowisko wpływa na te procesy. Skupili się zaś przede wszystkim na wpływie zmian klimatu na wytwarzanie izoprenu.
      Już wcześniej widziano, że niektóre rośliny wytwarzają izopren w ramach procesu fotosyntezy. Wiedziano też, że zachodzące zmiany mają znoszący się wpływ na ilość produkowanego izoprenu. Z jednej powiem strony wzrost stężenia CO2 w atmosferze powoduje, że rośliny wytwarzają mniej izoprenu, ale wzrost temperatury zwiększał jego produkcję. Zespół Sharkeya chciał się dowiedzieć, które z tych zjawisk wygra w sytuacji, gdy stężenie CO2 nadal będzie rosło i rosły będą też temperatury.
      Przyjrzeliśmy się mechanizmom regulującym biosyntezę izoprenu w warunkach wysokiego stężenia dwutlenku węgla. Naukowcy od dawna próbowali znaleźć odpowiedź na to pytanie. W końcu się udało, mówi główna autorka artykułu, doktor Abira Sahu.
      Kluczowym elementem naszej pracy jest zidentyfikowanie konkretnej reakcji, która jest spowalniana przez dwutlenek węgla. Dzięki temu mogliśmy stwierdzić, że temperatura wygra z CO2. Zanim temperatura na zewnątrz sięgnie 35 stopni Celsjusza, CO2 przestaje odgrywać jakikolwiek wpływ. Izopren jest wytwarzany w szaleńczym tempie, mówi Sharkey. Podczas eksperymentów prowadzonych na topolach naukowcy zauważyli też, że gdy liść doświadcza wzrostu temperatury o 10 stopni Celsjusza, emisja izoprenu rośnie ponad 10-krotnie.
      Dokonane odkrycie można już teraz wykorzystać w praktyce. Chociażby w ten sposób, by w miastach sadzić te gatunki drzew, które emitują mniej izoprenu. Jeśli jednak naprawdę chcemy zapobiec pogarszaniu się jakości powietrza, którym oddychamy, powinniśmy znacząco zmniejszyć emisję tlenków azotu. Wiatr wiejący od strony terenów leśnych w stronę miast będzie bowiem niósł ze sobą izopren, który wejdzie w reakcje ze spalinami, co pogorszy jakość powietrza w mieście.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przemysł produkcji stali jest odpowiedzialny za około 10% antropogenicznej emisji węgla do atmosfery. Gdyby przemysł ten stanowił oddzielne państwo byłby 3. – po Chinach i USA – największym emitentem CO2. Przedstawiciele firmy Electra z Boulder twierdzą, że opracowali praktycznie bezemisyjny proces elektrochemicznej produkcji stali, a pozyskany w ten sposób materiał nie będzie droższy od wytworzonego metodami tradycyjnymi.
      Aż 90% CO2 emitowanego w procesie produkcji stali powstaje podczas wytopu żelaza z rudy. Dlatego też, jeśli chcemy mówić o dekarbonizacji procesu produkcji stali, mówimy o dekarbonizacji wytopu, stwierdza prezes i współzałożyciel Elektry, Sandeep Nijhawan.
      Electra opracowała „elektrochemiczny proces hydrometalurgiczny”, dzięki któremu zawarty w rudzie tlenek żelaza jest redukowany do żelaza w temperaturze 60 stopni Celsjusza. Nie trzeba przy tym spalać węgla. Najpierw ruda jest rozpuszczana w specjalnym roztworze kwasów. To znany proces hydrometalurgiczny, który stosowany jest np. podczas produkcji miedzi czy cynku. Jednak dotychczas nie udawało się go stosować w odniesieniu do żelaza. Nijhawan wraz z zespołem opracowali unikatowy proces, który to umożliwia. Dzięki niemu oddzielają zanieczyszczenia od rudy, a następnie pozyskują samo żelazo przepuszczając przez roztwór prąd elektryczny. Cały proces może być napędzany energią słoneczną i wiatrową. Ma on jeszcze jedną olbrzymią zaletę, do produkcji można używać tanich rud o niskiej zawartości żelaza. Możemy korzystać z rud, które obecnie są traktowane jak odpady. W kopalniach jest olbrzymia ilość takich rud, których nikt nie wydobywa, stwierdza Nijhawan.
      Electra podpisała już umowę z firmą Nucor Corporation, największym producentem stali w USA. Firma zebrała też 85 milionów dolarów od inwestorów za które rozwija swoją technologię i buduje eksperymentalną fabrykę w Boulder w USA. Ma ona ruszyć jeszcze w bieżącym roku, a przed końcem dekady ma rozpocząć się komercyjna produkcja stali z wykorzystaniem nowej technologii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...