Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Przemysław Gaweł i jego koledzy z Uniwersytetu w Oksfordzie zsyntetyzowali pierwszą molekułę w kształcie pierścienia, zbudowaną z czystego węgla. Uczeni rozpoczęli od trójkątnej molekuły złożonej z węgla i tlenu, a następnie – manipulując nią za pomocą prądu elektrycznego – stworzyli 18-atomowy węglowy pierścień. Wstępne badania cyklokarbonu, bo taką nazwę zyskała molekuła, wykazały, że jest ona półprzewodnikiem, co daje nadzieję na wykorzystanie jej i jej podobnych molekuł do budowy podzespołów elektronicznych.

To absolutnie niesamowite osiągnięcie. Wielu naukowców, w tym i ja, próbowało stworzyć cyklokarbon i zbadać jego strukturę molekularną, ale na próżno, mówi Yoshito Tobe, chemik z Uniwersytetu w Osace.

Czysty węgiel występują w wielu różnych postaciach. Znajdziemy go w diamencie czy graficie. W diamencie każdy atom węgla łączy się z czterema innymi tworząc piramidę. Z kolei w grafenie tworzy heksagonalne wzorce łącząc się z trzema sąsiadami.
Jednak, jak przewidywało wielu teoretyków, w tym noblista Roald Hoffman, węgiel mógłby łączyć się jedynie z dwoma sąsiadującymi atomami, albo tworząc z każdym z nich podwójne wiązanie z każdej strony lub też potrójne z jednej i pojedyncze z drugiej. Wiele zespołów naukowych próbowało utworzyć łańcuchy lub pierścienie zbudowane według takiego schematu.

Uzyskanie takiej struktury jest jednak niezwykle trudne, gdyż jest ona bardzo reaktywna, a co za tym idzie, niestabilna. Szczególnie, gdy zostaje zagięta. Ustabilizowanie wymagało zwykle dodania innych atomów, niż węgiel. Pojawiły się też doniesienia o uzyskaniu cyklokarbonu w chmurze gazu, jednak nie przedstawiono jednoznacznych dowodów potwierdzających takie twierdzenia.

Naukowcy z Oksfordu najpierw za pomocą standardowych metod uzyskani kwadraty z czterech atomów węgla wychodzące z pierścienia, do którego były przyłączone za pomocą atomów tlenu. Następnie próbki zostały wysłane do laboratoriów IBM-a w Zurichu. Tam umieszczono je na podłożu z chlorku sodu znajdującego się w komorze próżniowej. Następnie za pomocą prądu manipulowano każdym kwadratem z osobna, by usunąć elementy zawierające tlen. Po wielu próbach i błędach mikroskop wykazał, że w końcu uzyskano 18-atomowy pierścień z czystego węgla.

Dalsze badania ujawniły, że pierścień ma naprzemienną strukturę potrójnych i pojedynczych wiązań. To właśnie taka struktura nadała całości właściwości półprzewodnika. To zaś sugeruje, że jeśli uda się uzyskać podobnie zbudowane łańcuchy, to i one będą półprzewodnikami, co daje nadzieję na wykorzystanie ich do budowy molekularnej wielkości podzespołów elektronicznych.

Na razie prowadzimy badania podstawowe, mówi Gaweł. Obecnie naukowcy chcą zbadać właściwości cyklokarbonu oraz znaleźć bardziej wydajne metody jego pozyskiwania. Wciąż nie wiadomo, czy cyklokarbon pozostanie stabilny po jego zdjęciu z podłoża oraz czy uda się go tworzyć szybciej niż molekuła po molekule.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jednym z najważniejszych czynników, który znacząco oddziałuje na wycenę diamentu, jest jego masa wyrażona w karatach. Karat, oznaczany skrótem kt, to specyficzna jednostka miary, używana do określania wielkości diamentów oraz innych kamieni szlachetnych.
      Historia i pochodzenie jednostki karat
      Jednostka miary, jaką jest karat, pełni istotną funkcję w branży jubilerskiej, zwłaszcza w przypadku diamentów i innych kamieni szlachetnych. Nazwa „karat” pochodzi od drzewa zwanego szarańczyn strąkowy, znanego również jako karob. W starożytności, na Bliskim Wschodzie, nasiona karobu były używane jako odważniki do ważenia kamieni szlachetnych, ponieważ cechowały się one niezwykłą regularnością masy – każde ziarno ważyło około 0,2 grama. To właśnie ta właściwość sprawiła, że nasiona te stały się podstawą do określenia jednostki masy kamieni szlachetnych, która przetrwała do dziś.
      Karat jako miara masy diamentów
      W jubilerstwie karat metryczny (ct) jest standardową jednostką miary masy diamentów. Jeden karat odpowiada 200 miligramom, czyli 0,2 grama. Warto zauważyć, że choć karat określa wagę kamienia, nie odnosi się bezpośrednio do jego wielkości. Dwa diamenty o tej samej masie mogą mieć różne wymiary, w zależności od ich gęstości, kształtu i szlifu. Dlatego karat jest tylko jednym z wielu czynników, które wpływają na ocenę i wycenę diamentów.
      Zasada 4C – karat jako jeden z najważniejszych parametrów
      Karat jest jednym z czterech podstawowych kryteriów, znanych jako zasada 4C, które mają decydujący wpływ na wartość diamentu. Oprócz masy, na cenę diamentu wpływają także jego czystość, kolor i szlif, które wspólnie determinują jakość i piękno kamienia.
      W przypadku diamentów o większej masie nawet niewielka różnica w wadze może znacząco podnieść ich wartość, co jest szczególnie istotne przy ocenie rzadkich i dużych egzemplarzy. Dlatego precyzyjne określenie masy jest niezwykle ważne w procesie wyceny kamienia, a dokładność pomiaru jest niezwykle ważna, aby zapewnić sprawiedliwą ocenę jego wartości rynkowej. Co więcej, waga w karatach jest jednym z parametrów, który jest szczególnie brany pod uwagę przez kolekcjonerów i inwestorów, poszukujących diamentów o wyjątkowej jakości.
      Przykłady i znaczenie masy diamentu
      Największy diament, jaki kiedykolwiek odkryto – Cullinan – miał imponującą masę 3106 karatów, co odpowiada około 621,2 gramom. Diamenty o tak ogromnej masie są niezwykle rzadkie i stanowią nie tylko skarb o ogromnej wartości historycznej, ale także finansowej, często stając się obiektem zainteresowania kolekcjonerów i muzeów na całym świecie.
      Warto również wspomnieć, że masa diamentu jest precyzyjnie mierzona i podawana z dokładnością do dwóch miejsc po przecinku, co pozwala na bardzo dokładne określenie jego wagi, a tym samym znacząco wpływa na jego wycenę. Ta precyzja jest istotna, zwłaszcza przy obrocie diamentami, gdzie nawet najmniejsza różnica w masie może prowadzić do znacznych różnic w cenie biżuterii, podkreślając tym samym unikalność każdego egzemplarza.
      Gdzie najlepiej kupować diamenty?
      Diamenty najlepiej kupować w renomowanych i zaufanych sklepach jubilerskich, które oferują certyfikowane kamienie szlachetne. Certyfikaty, takie jak te wydawane przez GIA (Gemological Institute of America), gwarantują autentyczność i jakość diamentu. Można również rozważyć zakup diamentów na aukcjach, które często oferują unikatowe i rzadkie egzemplarze. Godnym polecenia miejscem do zakupu diamentów jest atelier House of Diamond, które oferuje diamenty i biżuterię najwyższej jakości, opatrzone certyfikatami GIA lub IGI.
      Ważne jest, aby unikać zakupów od niezweryfikowanych sprzedawców, szczególnie online, gdzie ryzyko oszustwa jest wyższe. Najważniejsze jest upewnienie się, że sprzedawca jest godny zaufania, a diament posiada pełną dokumentację, co zapewnia bezpieczeństwo inwestycji.
      Podsumowując, masa diamentów jest określana w karatach, jednostce miary, która ma swoje korzenie w starożytnych metodach ważenia kamieni szlachetnych na Bliskim Wschodzie. Dziś karat jest międzynarodowym standardem w branży jubilerskiej, a jego precyzyjne określenie ma ogromne znaczenie dla wyceny diamentów. Warto pamiętać, że diamenty o większej masie są nie tylko bardziej wartościowe, ale także trudniejsze do znalezienia, co dodatkowo podnosi ich cenę na rynku jubilerskim.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa japońskich naukowców z Kyoto University wykorzystała eksplozje do wyprodukowania... najmniejszych diamentowych termometrów, które można będzie wykorzystać do bezpiecznych pomiarów różnic temperatury w pojedynczej żywej komórce.
      Gdy w sieci krystalicznej diamentu dwa sąsiadujące atomy węgla zostaną zastąpione pojedynczym atomem krzemu, pojawia się optycznie aktywne miejsce, zwane centrum krzem-wakancja (silicon-vacancy center, SiV). Od niedawna wiemy, że takie miejsca są obiecującym narzędziem do pomiaru temperatur w skali nanometrów. Atom krzemu, gdy zostanie wzbudzony laserem, zaczyna jasno świecić w wąskim zakresie światła widzialnego lub bliskiej podczerwieni, a kolor tego światła zmienia się liniowo w zależności od temperatury otoczenia diamentu.
      Zjawisko to jest bezpieczne dla żywych organizmów, nawet dla bardzo delikatnych struktur. To zaś oznacza, że można je wykorzystać podczas bardzo złożonych badań nad strukturami biologicznymi, np. podczas badania procesów biochemicznych wewnątrz komórki. Problem stanowi jednak sam rozmiar nanodiamentów. Uzyskuje się je obecnie różnymi technikami, w tym za pomocą osadzania z fazy gazowej, jednak dotychczas potrafiliśmy uzyskać nanodiamenty o wielkości około 200 nm. Są one na tyle duże, że mogą uszkadzać struktury wewnątrzkomórkowe.
      Norikazu Mizuochi i jego zespół opracowali technikę pozyskiwania 10-krotnie mniejszych niż dotychczas nanodiamentów SiV. Japońscy naukowcy najpierw wymieszali krzem ze starannie dobraną mieszaniną materiałów wybuchowych. Następnie, w atmosferze wypełnionej CO2, dokonali eksplozji. Później zaś przystąpili do wieloetapowej pracy z materiałem, który pozostał po eksplozji. Najpierw za pomocą kwasu usunęli sadzę i metaliczne zanieczyszczenia, następnie rozcieńczyli i wypłukali uzyskany materiał w wodzie dejonizowanej, w końcu zaś pokryli uzyskane nanodiamenty biokompatybilnym polimerem. Na końcu za pomocą wirówki usunęli wszystkie większe nanodiamenty. W ten sposób uzyskali jednorodny zbiór sferycznych nanodiamentów SiV o średniej średnicy 20 nm. To najmniejsze wyprodukowane nanodiamenty SiV.
      Mizouchi wraz z kolegami przeprowadzili serię eksperymentów, podczas których wykazali, że ich nanodiamenty pozwalają na precyzyjne pomiary temperatury w zakresie od 22 do 40,5 stopnia Celsjusza. Zakres ten obejmuje temperatury wewnątrz większości organizmów żywych. To zaś otwiera nowe możliwości badań struktur wewnątrzkomórkowych. Japończycy zapowiadają, że rozpoczynają prace nad zwiększeniem liczby SiV w pojedynczym nanodiamencie, co ma pozwolić na uzyskanie jeszcze większej precyzji pomiaru. Dzięki temu – mają nadzieję – w przyszłości można będzie badać poszczególne organelle.
      Szczegóły badań zostały opisane na łamach Carbon.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dwoma dniami prezydent Biden popisał Inflation Reduction Act, ustawę przewidującą wydatkowanie z federalnego budżetu 437 miliardów dolarów w ciągu najbliższych 10 lat. Przewidziano w niej 370 miliardów USD na energetykę odnawialną i inne technologie niskoemisyjne. Jednak najbardziej interesujące są przepisy dotyczące technologii produkcji wodoru. Z jednej strony dlatego, że przewidziano środki znacznie większe niż spodziewali się analitycy, z drugiej zaś, że przepisy nie wyróżniają żadnej technologii pozyskiwania wodoru. Specjaliści zajmujący się rynkiem wodoru mówią, że dzięki temu w końcu można będzie mówić o początku prawdziwej rewolucji wodorowej. Wodór można przecież wykorzystać zarówno jako paliwo napędzające pojazdy czy statki, jak i do produkcji energii elektrycznej zasilającej nasze domy.
      Ustawa przewiduje bowiem, że producenci wodoru mogą pomniejszyć należny państwu podatek, a wielkość tego pomniejszenia będzie zależała wyłącznie od ilości dwutlenku węgla emitowanego podczas produkcji wodoru. I tak producenci wykorzystujący najczystszą obecnie metodę pozyskiwania wodoru, w czasie której na każdy kilogram wodoru emituje się 0,45 kg CO2, będą mogli odpisać 3 USD na każdy wytworzony kilogram wodoru. Dzięki temu wodór taki może być tańszy niż tzw. szary wodór uzyskiwany z gazu metodą reformingu parowego. W metodzie tej na każdy kilogram wodoru emituje się 8–10 kg CO2. Obecnie cena szarego wodoru w USA to około 2 USD/kg. Dlatego też niemal cały wodór – ok. 10 milionów ton rocznie – produkowany w Stanach Zjednoczonych wytwarzany jest tą metodą.
      Największym na świecie producentem wodoru są Chiny. Państwo Środka wytwarza 25 milionów ton tego pierwiastka rocznie, z czego aż 62% uzyskuje się z węgla, co wiąże się z emisją 18–20 kg CO2 na kilogram wodoru. Zarówno USA jak i Chiny produkują czysty tzw. zielony wodór uzyskiwany metodą elektrolizy z wykorzystaniem odnawialnych źródeł energii, ale produkcja ta nie przekracza 1% całości. Ten zielony wodór kosztuje bowiem ok. 5 USD/kg. Teraz, dzięki możliwości odpisania 3-dolarowego podatku, stanie się on konkurencyjny cenowo z szarym wodorem.
      Amerykanie opracowali też plan dojścia do produkcji zielonego wodoru bez ulg podatkowych. Przepisy przewidują, że do roku 2026 kwota, którą można będzie odpisać od kilograma zielonego wodoru zostanie zmniejszona do 2 USD, a w roku 2031 wyniesie 1 USD.
      Przepisy te znacznie przyspieszą transformację wodorową. Specjaliści z National Renewable Energy Laboratory spodziewali się, że cena zielonego wodoru spadnie o trzy dolary do roku 2026. Teraz, dzięki ustawie, spadnie ona natychmiast. Mamy gwałtowne obniżenie kosztów do poziomu, przy którym zielony wodór staje się konkurencyjny, a w wielu miejscach tańszy, od wodoru pozyskiwanego z paliw kopalnych. Stąd też wielkie nadzieje związane z nową ustawą.
      Wspomniany odpis podatkowy to tylko jeden z ostatnich kroków na rzecz wodorowej rewolucji. W ubiegłym roku w życie weszła ustawa Infrastructure Investment and Jobs Act, w której przewidziano 8 miliardów USD na stworzenie w USA ośmiu regionalnych „hubów wodorowych” produkujących zielony wodór. W oczekiwaniu na rozdysponowanie tych pieniędzy, co ma nastąpić we wrześniu lub październiku, przedsiębiorstwa zgłosiły 22 projekty potencjalnych hubów.
      Wkrótce też ma ruszyć warty 2,65 miliarda USD projekt firm Mitsubishi Power Americas i Magnum Development, w ramach którego zainstalowane zostaną 840-megawatowe turbiny zasilane mieszaniną gazu naturalnego i wodoru, wspierane przez instalację fotowoltaiczną. W miejscu tym 220-megawatowy system elektrolizy będzie wytwarzał wodór. W znajdujących się w pobliżu podziemnych wysadach solnych powstaną zaś magazyny przechowujące do 300 GWh energii w postaci wodoru.
      Nowe amerykańskie przepisy powinny znacznie przyspieszyć prace prowadzone chociażby przez Hydrogen Council. To ogólnoświatowa organizacja skupiająca obecnie 132 korporacje pracujące nad technologiami wodorowymi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krzem, jeden z najbardziej rozpowszechnionych pierwiastków na Ziemi, stanowi podstawę nowoczesnego świata. Bez niego nie mielibyśmy ani paneli fotowoltaicznych ani układów scalonych. Jednak właściwości krzemu jako półprzewodnika są dalekie od ideału. Elektrony w krzemie mogą przemieszczać się z dużymi prędkościami, ale tego samego nie można już powiedzieć o dziurach, towarzyszkach elektronów. Ponadto krzem słabo przewodzi ciepło, przez co konieczne jest stosowanie kosztownych systemów chłodzenia.
      Badacze z MIT, Uniwersytetu w Houston i innych instytucji wykazali właśnie, że krystaliczny sześcienny arsenek boru jest pozbawiony tych wad. Zapewnia dużą mobilność elektronom i dziurom oraz charakteryzuje się świetnym przewodnictwem cieplnym. Badacze twierdzą, że to najlepszy ze znanych nam półprzewodników, a może i najlepszy z możliwych półprzewodników.
      Dotychczas jednak arsenek boru był wytwarzany i testowany w niewielkich ilościach wytwarzanych na potrzeby badań naukowych. Takie próbki były niejednorodne. Opracowanie metod ekonomicznej produkcji tego związku na skalę przemysłową będzie wymagało dużo pracy.
      Już w 2018 roku David Broido, który jest współautorem najnowszych badań, teoretycznie przewidział, że arsenek boru powinien charakteryzować się świetnym przewodnictwem cieplnym. Później przewidywania te zostały dowiedzione eksperymentalnie. Wykazano m.in., że chłodzi on układy scalone lepiej niż diament. Okazało się równie, że materiał ten ma bardzo dobre pasmo wzbronione, którego istnienie jest niezbędną cechą półprzewodnika. Obecne badania dodały zaś do tego obrazu możliwość szybkiego transportu elektronów i dziur, zatem arsenek boru wydaje się mieć wszystkie cechy półprzewodnika idealnego.
      To bardzo ważna cecha, gdyż w półprzewodnikach mamy jednocześnie ładunki dodatnie i ujemne. Jeśli więc budujemy z nich urządzenie elektroniczne, chcemy, by zarówno elektrony jak i dziury napotykały jak najmniejszy opór, mówi profesor Gang Chen z MIT.
      Krzem i inne półprzewodniki, jak np. używany do budowy laserów arsenek galu, charakteryzuje się dobrą mobilnością elektronów, ale nie dziur. Poważnym problemem jest też rozpraszanie ciepła. Ciepło to poważny problem w elektronice. W samochodach elektrycznych stosuje się z tego powodu węglik krzemu. Ma on co prawda mniejszą mobilność elektronów niż krzem, ale za to jego przewodnictwo cieplne jest 3-krotnie lepsze. Wyobraźmy sobie więc, co moglibyśmy osiągnąć stosując arsenek boru, który ma 10-krotnie lepsze przewodnictwo cieplne i większość mobilność dziur oraz elektronów niż krzem. To by wszystko zmieniło, dodaje doktor Jungwoo Shin z MIT.
      Wyzwaniem jest obecnie opracowanie metod produkcji arsenku boru w ilościach, które można by praktycznie wykorzystać. Obecne metody produkcyjne pozwalają na uzyskanie bardzo niejednorodnego materiału, z którego naukowcy wydzielają niewielkie jak najbardziej jednorodne fragmenty, by badać je w laboratoriach.
      Wiele wskazuje na to, że arsenek boru jest półprzewodnikiem (niemal) idealnym, ale nie wiemy, czy będziemy w stanie go wykorzystać, dodaje Chen. Krzem stanowi podstawę całego przemysłu półprzewodnikowego, zatem od opracowania metod masowej produkcji jednorodnego arsenku boru zależy, czy trafi on pod strzechy. Badania nad krzemem trwały całe dziesięciolecia, zanim dowiedzieliśmy się, jak uzyskiwać ten materiał o czystości dochodzącej do 99,99999999%. Arsenek boru ma jeszcze przed nami wiele tajemnic. Zanim wyprodukujemy z niego elektronikę musimy np. poznać jego długookresową stabilność.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...