Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Ćwiczyć, by widzieć słuchem

Recommended Posts

Pracownicy organizacji charytatywnej Visibility z Glasgow prowadzą projekt pilotażowy, w ramach którego 10 niewidomych dzieci w wieku od 5 do 17 lat uczy się echolokacji. Ma im ona pomóc w tworzeniu map mentalnych, czyli wizualizowaniu otoczenia. Dzieci kląskają i starają się zinterpretować dźwięk, odbijany od obiektów znajdujących się w pobliżu.

Niedawne studia potwierdziły to, co intuicyjnie podejrzewano już od dawna: niewidomi posługują się swoim wyczulonym słuchem, by wykorzystując echo, oszacować odległości, rozmiar i gęstość przedmiotów w otoczeniu.

Projekt popiera pediatra oftalmolog profesor Gordon Dutton, który chciałby, by sztukę echolokacji opanowało aż 385 tys. niewidomych i niedowidzących z Wielkiej Brytanii.

Pionierami omawianej techniki są Amerykanie. Dzięki niej odpowiednio szkoleni niewidomi potrafią, biorąc pod uwagę wysokość i barwę dźwięków echa, odróżnić od siebie ludzi, drzewa, budynki i zaparkowane samochody. Umieją określić wysokość, gęstość i kształt obiektu nawet z odległości 30 metrów.

Brytyjska akcja to pokłosie rocznej wizyty 41-letniego Dana Kisha z Kalifornii, który mimo niepełnosprawności jeździ na rowerze i jest w stanie stwierdzić, jakie owoce wiszą na napotkanym drzewie.

W sierpniu ubiegłego roku pisaliśmy o Benie Underwoodzie z Sacramento, który tak sprawnie posługuje się echolokacją, że nie sposób odróżnić go od widzących rówieśników. Zadziwił nawet samego Kirsha.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Niektóre nietoperze mają o wiele większą kontrolę nad echolokacją niż wcześniej sądzono. Badania nad rudawką nilową (Rousettus aegyptiacus) wykazały, że ssaki te mogą m.in. manipulować szerokością wiązki dźwięków. Naukowcy porównują to do dostosowywania przez ludzi wielkości okienka uwagi.
      Rudawki nilowe żyją w złożonych i zróżnicowanych środowiskach: chronią się w jaskiniach, a ponieważ żywią się owocami, muszą się jakoś poruszać wśród gałęzi drzew. W ramach eksperymentu zespół Nachuma Ulanovsky'ego z Instytutu Nauki Weizmanna oraz Cynthii Moss z University of Maryland zauważył, że R. aegyptiacus dostosowują się do otoczenia, stosując dwie taktyki – wspomnianą na początku regulację szerokości wiązki wysokich dźwięków, a także modyfikację ich natężenia.
      Naukowcy nauczyli 5 rudawek nilowych wykrywania i lądowania na plastikowej sferze wielkości mango. Umieszczano ją w różnych miejscach dużego, ciemnego pomieszczenia, w którym zamontowano 20 mikrofonów. W jednym ze scenariuszy symulowano najeżony przeszkodami las. Dookoła niby-mango między 4 drążkami rozciągnięto dwie sieci. Nietoperze musiały przelecieć korytarzem, którego szerokość i ukształtowanie zmieniały się z próby na próbę.
      Badacze odkryli, że w obecności wielu przeszkód za pomocą podwójnych sonarowych pulsów ssaki obejmowały 3-krotnie większą powierzchnię niż w przypadku otwartego terenu. Oznacza to, że między pulsami można było wyznaczyć większy kąt. Dodatkowo rosło natężenie dźwięków. Naukowcy tłumaczą, że szersze pole widzenia pozwalało rudawkom śledzić położenie mango i drążków jednocześnie. Niewykluczone, że zjawisko to ogranicza się wyłącznie do R. aegyptiacus, które potrafią bardzo szybko poruszać językiem.
    • By KopalniaWiedzy.pl
      Podczas polowania i do orientowania się w przestrzeni delfiny wykorzystują echolokację. Najnowsze badania szwedzko-amerykańskiego zespołu wskazują, że ssaki te posługują się podwójnym sonarem: zamiast jednego krótkotrwałego ultradźwięku, który odbija się od przeszkód, wysyłają bowiem dwa.
      Dźwięki mają inne częstotliwości i mogą być wysyłane w różnych kierunkach. Korzyść polega prawdopodobnie na tym, że delfin jest w stanie precyzyjniej zlokalizować obiekt - twierdzi dr Josefin Starkhammar z Lund University.
      Artykuł na temat projektu Szwedów i Patricka W. Moore'a, Lois Talmadge oraz Doriana S. Housera z National Marine Mammal Foundation w San Diego ukazał się w piśmie Biology Letters.
      Dr Starkhammar przypuszcza, że dźwięki pochodzą z dwóch różnych narządów. O tym, że są dwa, wiadomo już od jakiegoś czasu, ale dotąd sądzono, że podczas echolokacji aktywny jest tylko jeden. Wg pani biolog, trzeba jednak przeprowadzić kolejne badania, ponieważ zjawisko występowania dwóch strumieni można równie dobrze wyjaśnić skomplikowanymi odbiciami fali wewnątrz głowy ssaka.
      To zaskakujące, że do odkrycia doszło dopiero teraz. Badania nad delfinami i echolokacją są przecież prowadzone od lat 60. ubiegłego wieku. Opóźnienie można wytłumaczyć tym, że badania wymagały zastosowania zaawansowanego sprzętu i technik przetwarzania sygnału. Poza tym do tej pory delfinami zajmowali się głównie sami biolodzy (Starkhammar jest fizykiem i elektronikiem), nie dziwi więc, że ograniczali się do swojej dziedziny. Szwedka uważa, że dopiero skład specjalności jej zespołu - inżynieria połączona z biologią morską - stanowi klucz do sukcesu. Podwójny sonar pozostałby zapewne nadal słodką tajemnicą delfinów, gdyby nie urządzenie z 47 wbudowanymi hydrofonami. Obecnie to jedno z najlepszych urządzeń do wychwytywania w wodzie delfinich ultradźwięków. Starkhammar pracowała nad nim bardzo długo, prowadząc eksperymenty m.in. w Kolmården Wildlife Park.
      Echolokacja nie jest domeną wyłącznie delfinów (posługują się nią nietoperze, ryjówki, ptaki z rzędów jerzykowatych i lelkowych, jednak delfiny są w tej dziedzinie prawdziwymi mistrzami. W końcu w toku ewolucji doskonaliły tę umiejętność przez wiele, wiele lat...
    • By KopalniaWiedzy.pl
      Wyostrzenie dotyku u osób niewidomych to nie kwestia kompensacji utraty wzroku przez mózg, lecz skutek doświadczenia.
      W studium naukowców z McMaster University wzięło udział 28 osób niewidomych (o różnym stopniu opanowania alfabetu Braille'a) oraz 55 prawidłowo widzących dorosłych. Badano wrażliwość na dotyk sześciu palców oraz obu stron dolnej wargi. Kanadyjczycy rozumowali, że jeśli czułość zmysłu zwiększa codzienna zależność od dotyku, niewidomi powinni wypadać lepiej od widzących w odniesieniu do wszystkich palców, a u posługujących się w alfabetem Braille'a szczególna wrażliwość powinna wystąpić w obrębie palców używanych do czytania. Jeśli to jednak utrata wzroku jako taka zwiększa wrażliwość dotykową, należałoby się spodziewać, że niewidomi przewyższają widzących pod względem wrażliwości dotykowej wszystkich części ciała, nawet tych nieużywanych tak często, np. warg.
      Od zawsze istniały dwie konkurencyjne teorie, czemu ociemniali mają lepszy zmysł dotyku. My odkryliśmy, że siłą napędową tego zjawiska jest zależność od dotyku. Zaawansowani użytkownicy Braille'a, którzy mogą spędzać całe godziny na odczytywaniu znaków palcami, wypadali bowiem znacząco lepiej. Podczas testowania wrażliwości warg widzący i niewidomi wypadali tak samo – wyjaśnia prof. Daniel Goldreich.
      W ramach eksperymentu Kanadyjczycy posługiwali się specjalną maszyną, która unieruchamiała opuszki palców. Palce kładziono nad otworem w stole. Wysuwały się z niego pałeczki o zróżnicowanej teksturze. Zadanie ochotników polegało na zidentyfikowaniu wzoru za pomocą dotyku. Zabieg powtarzano na dolnej wardze.
      Niewidomi wypadali lepiej od osób widzących, a ponadto gdy badano palce używane przez znających Braille'a do czytania, osiągali oni lepsze wyniki od ludzi niewidomych, którzy nie opanowali tego alfabetu. Kanadyjczycy stwierdzili też, że u użytkowników Braille'a palce do czytania były wrażliwsze od palców nieczytających.
    • By KopalniaWiedzy.pl
      Kiedyś biolodzy sądzili, że podczas polowania na ssaki orki unikają wykrycia, ponieważ zaczynają się komunikować za pomocą niesłyszalnych dla ewentualnych ofiar dźwięków o bardzo wysokiej częstotliwości. Okazuje się jednak, że drapieżniki nie wydają wtedy żadnych dźwięków, a mimo to są jakoś w stanie skoordynować grupowe działania.
      By stwierdzić, jak orki to robią, Volker Deecke z Uniwersytetu św. Andrzeja oraz Rüdiger Riesch z Uniwersytetu Stanowego Północnej Karoliny posłużyli się hydrofonami. Były one na tyle czułe, że zespół słyszał chrupanie, gdy myśliwi wgryzali się w zdobyte łupy.
      Naukowcy skoncentrowali się na ekotypie orek wędrownych z Oceanu Spokojnego u wybrzeży Kanady i Alaski. Orki wędrowne (koczownicze) tworzą mniejsze, liczące od 3 do 7 osobników, stada od orek osiadłych, które żyją bliżej brzegów w grupach składających się z 10-25 osobników. Populacje przybrzeżne żywią się głównie rybami oraz w mniejszym stopniu głowonogami, a populacje wędrowne fokami, morświnami czy mniejszymi delfinowatymi. Niektórzy specjaliści sądzą, że mamy do czynienia z dwoma różnymi podgatunkami. Najbardziej uderzającą różnicę stanowi dieta. W ciągu 40 lat badań nad tymi zwierzętami nigdy nie widziano orki osiadłej jedzącej ssaka ani orki wędrownej jedzącej ryby – podkreśla dr Deecke.
      Orki osiadłe polują na ryby, wykorzystując echolokację. Walenie kląskają, a generowana przez nie fala dźwiękowa odbija się od ofiary. Jednak wszystkie ssaki morskie doskonale słyszą pod wodą. Gdyby waleń pływał w pobliżu, kląskając jak szalony, wszystkie foki i morświny pomyślałyby zapewne – o, zbliża się drapieżnik, trzeba uciekać.
      Co zatem robią orki wędrowne, by jakoś zdobyć pokarm? Przechodzą w "tryb cichy". Wszystko wskazuje na to, że nie muszą się w ogóle porozumiewać, aby skutecznie zapolować. Chcąc pokryć większy obszar, rozpływają się od czasu do czasu, oddalając się na kilkaset metrów, a nawet kilka kilometrów, a następnie ponownie się do siebie zbliżają. Gdy tylko coś schwytają, zaczynają się ponownie odzywać. Dr Deecke nie sądzi, by orki mogły się widzieć z większych odległości. Przez obecność rozdrobnionego lodu w okolicach Alaski woda ma bowiem konsystencję i barwę mleka. Szkocki biolog przypuszcza, że walenie nieustannie ćwiczą przebieg polowania, dlatego znają swoje pozycje. Naukowcy chcą dokładniej poznać działania orek, nagrywając wydawane przez nie dźwięki i śledząc ich ruchy za pomocą GPS-a.
    • By KopalniaWiedzy.pl
      Dr Mateusz Ciechanowski z Uniwersytetu Gdańskiego wykazał, że owadożerne nietoperze korzystają na współdzieleniu habitatu z reintrodukowanymi w Polsce po II wojnie światowej bobrami. Powalając drzewa, Castor fiber przerzedzają lasy i zagajniki, ułatwiając lotnikom polowanie. Ze względu na mniejszą liczbę przeszkód jest ono bezpieczniejsze. Co więcej, tamy na rzece powodują, że tworzą się rozlewiska, gdzie owady, np. ochotkowate (Chironomidae), wspaniale się namnażają.
      Przed badaniem gdańszczan w ramach studiów nad wpływem bobrzych działań analizowano zwierzęta żyjące w wodzie lub jej pobliżu. Analizowano m.in. ptaki blaszkodziobe (Anseriformes), płazy i skorupiaki.
      Tymczasem na pracach wodno-lądowych bobrów korzystają zwłaszcza borowce wielkie (Nyctalus noctula), karliki drobne (Pipistrellus pygmaeus), karliki malutkie (Pipistrellus pipistrellus) i karliki większe (Pipistrellus nathusii).
      Nietoperze są bardzo zręcznymi lotnikami, ale te gatunki, które chwytają ofiary w powietrzu, nie mogą skutecznie polować w gęstym lesie – wyjaśnia Ciechanowski. Namierzając smaczne kąski, latające ssaki polegają na echolokacji, jednak gdy drzewo rośnie tuż przy drzewie, dźwięki odbijają nie tylko potencjalne łupy, ale i liczne gałęzie, pnie czy liście. Porównywanie charakterystyk dźwięków wydanych z echami nie ma więc większego sensu. Sytuacja myśliwych wygląda o wiele lepiej w rejonach, gdzie bobry powaliły drzewa, żerując lub budując tamy. Idealne warunki stwarzają zalane lasy z przecinkami.
      Co ciekawe, na działalności bobrów nie korzystają za bardzo gatunki nietoperzy, które polują blisko powierzchni wody, a więc np. nocki rude (Myotis daubentonii). Nietoperze te żywią się owadami i innymi drobnymi bezkręgowcami, chwytanymi w locie nad zbiornikami o niezarośniętej tafli. Zespół Ciechanowskiego sądził, że o ile wąskie cieki nie nadają się dla nocków, o tyle spokojnie będą one mogły polować nad terenami wokół tam. Niestety, rozlewiska tworzone przez młode bobry szybko porastają rzęsą, co zakłóca echo podobnie jak gęste korony drzew. Wygląda więc na to, że bobry najlepiej współpracują z lotnikami preferującymi wysokie pułapy.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...