Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Najszybsza na świecie bramka i ważny przełom w informatyce kwantowej

Recommended Posts

Grupa fizyków z australijskiego Uniwersytetu Nowej Południowej Walii (University of New South Wales, UNSW) opracowała najszybszą bramkę kwantową w historii. Na czele zespołu stoi profesor Michelle Simmons, znana z ważnych osiągnięć na polu informatyki kwantowej.

Australijczycy zbudowali dwukubitową bramkę kwantową na krzemie, która przeprowadziła operację logiczną w czasie 0,8 nanosekundy. To 200-krotnie szybciej niż inne istniejące bazujące na spinie bramki dwukubitowe.

Zespół profesor Simmons bazował na swoich wcześniejszych przełomowych pracach, kiedy to dzięki niezwykłej precyzji pomiarów jako pierwsi wykazali, że dwa kubity wchodzą w interakcje. Zespół profesor Simmons jest jedynym na świecie, który potrafi dokładnie określić pozycję kubitów w ciele stałym.

Australijczycy zbudowali bramkę umieszczając dwa atomy bliżej siebie niż kiedykolwiek wcześniej, a nastepnie, w czasie rzeczywistym, w sposób kontrolowany obserwując i mierząc ich spiny. Ich unikatowe podejście polega na umieszczaniu kubitów oraz całej elektroniki potrzebnej do inicjalizacji, kontroli i pomiarów ich stanów z taką precyzją, jaka do niedawna wydawała się niemożliwa. Teraz naukowcy pracują nad przełożeniem swojej technologii na praktyczne skalowalne zastosowania, które pozwolą na seryjną budowę procesorów.

Rekord najdłuższej koherencji na krzemie należy do atomowych kubitów. Dzięki wykorzystaniu naszej unikatowej technologii byliśmy w stanie z wysokim stopniem dokładności odczytać i inicjalizować pojedyncze spiny elektronów w atomowych kubitach na krzemie. Wykazaliśmy tez, że nasz system charakteryzuje się najniższym szumem elektronicznym spośród wszystkich systemów wykorzystujących kubity na półprzewodniku. Teraz zoptymalizowaliśmy wszystkie elementy naszej technologii, dzięki czemu uzyskaliśmy naprawdę szybko, dokładną dwukubitową bramkę, która jest podstawowym budulcem krzemowego komputera kwantowego. Wykazaliśmy, że możliwa jest kontrola w skali atomowej i daje to olbrzymie korzyści, w tym niezwykłą prędkość działania naszego systemu, cieszy się profesor Simmons.

Dziekan Wydziału Nauk Ścisłych, profesor Emma Johnston dodaje: To jeden z ostatnich kamieni milowych, jakie zespół Michelle musiał osiągnąć, by wybudować komputer kwantowy na krzemie. Ich kolejnym celem jest stworzenie 10-kubitowego obwodu scalonego. Mamy nadzieję, że osiągną to w ciągu 3–4 lat.

Zespół Simmons najpierw wykorzystał skaningowy mikroskop tunelowy do określenia optymalnej odległości pomiędzy dwoma kubitami. Opracowana przez nas technologia produkcji pozwoliła na umieszczenie kubitów dokładnie tam, gdzie chcieliśmy. Dzięki temu kubitowa bramka była tak szybka, jak to tylko możliwe, mówi współautor badań Sam Gorman. Nie tylko umieściliśmy kubity bliżej niż podczas naszych poprzednich przełomowych badań, ale nauczyliśmy się kontrolować z precyzją subnanometrową wszystkie aspekty naszej architektury.

Następnie naukowcy byli w stanie w czasie rzeczywistym mierzyć stany kubitów oraz – co chyba najważniejsze – kontrolowali siłę interakcji pomiędzy dwoma elektronami w przedziałach czasowych sięgających nanosekund. Mogliśmy oddalać i przybliżać do siebie elektrony i w ten sposób włączać i wyłączać interakcje pomiędzy nimi, dodaje inny uczestnik badań, Yu He. Zaprezentowana przez nas bramka kwantowa, zwaną bramką SWAP, jest idealnie przystosowana do wymiany informacji kwantowej pomiędzy kubitami, a po połączeniu z bramką z pojedynczego kubity pozwala na wykonanie dowolnego algorytmu kwantowego.

Najnowsze osiągnięcie to ukoronowanie 20 lat pracy. To olbrzymi postęp. Możemy kontrolować naturę na najniższym poziomie, możemy więc tworzyć interakcje pomiędzy dwoma atomami, a także wchodzić w interakcje z jednym z nich, nie zaburzając stanu drugiego. To coś niewiarygodnego. Wiele osób sądziło, że jest to niemożliwe. Tym, co zachęcało nas do pracy było przypuszczenie, że jeśli uda się nam kontrolować zjawiska w tej skali, to będą one przebiegały niezwykle szybko. I tak rzeczywiście jest, ekscytuje się Simmons.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z Uniwersytetu Oksfordzkiego pobili światowy rekord w precyzji kontrolowania pojedynczego kubitu. Uzyskali odsetek błędów wynoszący zaledwie 0,000015%, co oznacza, że ich kubit może popełnić błąd raz na 6,7 milionów operacji. O ile wiemy to najbardziej precyzyjne operacje z udziałem kubitów, jakie kiedykolwiek wykonano. To ważny krok w kierunku budowy praktycznego komputera kwantowego, który zmierzy się z prawdziwymi problemami, mówi współautor badań, profesor David Lucas z Wydziału Fizyki Uniwersytetu Oksfordzkiego.
      Użyteczne obliczenia prowadzone za pomocą komputerów kwantowych będą wymagały prowadzenia milionów operacji przez wiele kubitów. To oznacza, że jeśli odsetek błędów będzie zbyt wysoki, obliczenia staną się nieużyteczne. Oczywiście istnieją metody korekcji błędów, ale ich zastosowanie będzie wymagało zaangażowania kolejnych kubitów. Opracowana w Oksfordzie nowa metoda zmniejsza liczbę błędów, zatem zmniejsza liczbę wymaganych kubitów, a to oznacza, że zmniejsza rozmiary i koszt budowy samego komputera kwantowego.
      Jeśli zmniejszymy liczbę błędów, możemy zmniejszyć moduł zajmujący się korektą błędów, a to będzie skutkowało mniejszym, tańszym, szybszym i bardziej wydajnym komputerem kwantowym. Ponadto techniki precyzyjnego kontrolowania pojedynczego kubity są przydatne w innych technologiach kwantowych, jak zegary czy czujniki kwantowe.
      Bezprecedensowy poziom kontroli i precyzji został uzyskany podczas pracy z uwięzionym jonem wapnia. Był on kontrolowany za pomocą mikrofal. Taka metoda zapewnia większą stabilność niż kontrola za pomocą laserów, jest też od nich tańsza, bardziej stabilna i łatwiej można ją zintegrować w układach scalonych. Co więcej, eksperymenty prowadzono w temperaturze pokojowej i bez użycia ochronnego pola magnetycznego, co znakomicie upraszcza wymagania techniczne stawiane przed komputerem wykorzystującym tę metodę.
      Mimo że osiągnięcie jest znaczące, przed ekspertami pracującymi nad komputerami kwantowymi wciąż stoją poważne wyzwania. Komputery kwantowe wymagają współpracy jedno- i dwukubitowych bramek logicznych. Obecnie odsetek błędów na dwukubitowych bramkach jest bardzo wysoki, wynosi około 1:2000. Zanim powstanie praktyczny komputer kwantowy trzeba będzie dokonać znaczącej redukcji tego odsetka.

      Źródło: Single-qubit gates with errors at the 10−7 level, https://journals.aps.org/prl/accepted/10.1103/42w2-6ccy

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej.
      Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza).
      Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też
      w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5.
      Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy.
      Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ostatnim półwieczu producenci komputerów dokonali olbrzymich postępów pod względem miniaturyzacji i wydajności układów scalonych. Wciąż jednak bazują one na krzemie i w miarę zbliżania się do fizycznych granic wykorzystywania tego materiału, miniaturyzacja staje się coraz trudniejsza. Nad rozwiązaniem tego problemu pracują setki naukowców na całym świecie. Jest wśród nich profesor King Wang z University of Miami, który wraz z kolegami z kilku amerykańskich uczelni ogłosił powstanie obiecującej molekuły, która może stać się podstawą do budowy molekularnego komputera.
      Na łamach Journal of American Chemical Society uczeni zaprezentowali najlepiej przewodzącą prąd cząsteczkę organiczną. Co więcej, składa się ona z węgla, siarki i azotu, a więc powszechnie dostępnych pierwiastków. Dotychczas żadna molekuła nie pozwala na tworzenie elektroniki bez olbrzymich strat. Tutaj mamy pierwszą molekułą, która przewodzi prąd na dystansie dziesiątków nanometrów bez żadnej straty energii, zapewnia Wang. Uczeni są pewni swego. Testy i sprawdzanie molekuły pod wszelkimi możliwymi kątami trwały przez ponad dwa lata.
      Zdolność cząsteczek do przewodzenia elektronów wykładniczo zmniejsza się wraz ze wzrostem rozmiarów molekuły. Tym, co jest unikatowe w naszej molekule, jest fakt, że elektrony mogą przemieszczać się przez nie bez straty energii. Teoretycznie jest to wiec najlepszy materiał do przewodzenia elektronów. Pozwoli on nie tylko zmniejszyć rozmiary elektroniki w przyszłości, ale jego struktura umożliwi stworzenie komputerów funkcjonujących tak, jak nie jest to możliwe w przypadku materiałów opartych na krzemie, dodaje Wang.
      Nowa molekuła może posłużyć do budowy molekularnych komputerów kwantowych. Niezwykle wysokie przewodnictwo naszej cząsteczki to rezultat intrygującej interakcji spinów elektronów na obu końcach molekuły. W przyszłości taki system molekularny może pełnić rolę kubitu, podstawowej jednostki obliczeniowej komputerów kwantowych, cieszy się uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Eksperci z Quantum Internet Alliance (QIA) ogłosili powstanie pierwszego systemu operacyjnego dla sieci kwantowych – QNodeOS. To olbrzymi krok naprzód w kierunku uczynienia z sieci kwantowych praktycznej technologii. W skład QIA wchodzą naukowcy z Uniwersytetu Technologicznego w Delft, Uniwersytetu w Innsbrucku, Instytutu badań nad kwantowym przetwarzaniem i kwantowym internetem (QuTech), Francuskiego Narodowego Instytutu Badawczego Nauk Komputerowych i Automatyzacji (INRIA) oraz Francuskiego Narodowego Centrum Badań Naukowych (CNRS).
      Naszym celem jest zapewnienie wszystkim dostępu do kwantowej technologii sieciowej. Dzięki QNodeOS robimy wielki krok naprzód. Dzięki temu po raz pierwszy stało się możliwe łatwe programowanie i wykonywanie aplikacji działających w sieciach kwantowych, mówi profesor Stephanie Wehner, która stała na czele grupy badawczej. Nasze prace otwierają też całkowicie nowe pola w badaniach nad komputerami kwantowymi, dodaje.
      Tym, co pozwoliło na rozpowszechnienie się klasycznych komputerów była możliwość łatwego tworzenia oprogramowania. I właśnie to umożliwia QNodeOS. System jest podobny do oprogramowania, która mamy w domu. Dzięki niemu nie musimy wiedzieć, jak działa sprzęt, by go używać, dodaje Mariagrazia Iuliano, doktorantka w QuTech.
      QNodeOS pozwala na programowanie aplikacji wysokiego poziomu, podobnie jak programowane są obecnie aplikacje dla Windows czy Androida. W przeciwieństwie do dotychczasowych systemów dla komputerów kwantowych, programista nie musi brać pod uwagę specyfiki sprzętowej czy konfiguracji maszyny, na której ma działać jego program. Uruchamiając swój system na dwóch różnych procesorach badacze wykazali, że QNodeOS może współdziałać z różnymi typami sprzętu. Procesor bazujący na uwięzionych jonach działa zupełnie inaczej od procesorów wykorzystujących centra barwne (defekty krystaliczne) w diamentach. Mimo to wykazaliśmy, że nasz system pracuje na obu tych typach procesorów, cieszy się profesor Tracy Northup z Uniwersytetu w Innsbrucku.
      Teraz twórcy nowego systemu pracują nad zapewnieniem wszystkim chętnym dostępu do odpowiedniego oprogramowania i sprzętu. Naukowcy chcą, między innymi, udostępnić QNodeOS na Quantum Network Explorer, pokazowej sieci kwantowej stworzonej prze QuTech. Dzięki temu chętni będą mogli eksperymentować z nowym systemem i tworzyć nań oprogramowanie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit.
      Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń.
      Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze.
      Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem.
      Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat.
      Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu.
      Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...