Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

POLAR-2, projekt NCBJ, poleci w kosmos. Pomoże w badaniu rozbłysków gamma

Recommended Posts

W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ).

Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji.

Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument.

Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor.

Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk.

Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Koncert Eurowizji będzie ostatnim z serii 20 eksperymentów prowadzonych przez holenderskich naukowców, którzy chcą się dowiedzieć, jakie jest ryzyko rozprzestrzeniania się wirusa SARS-CoV-2 podczas imprez masowych.
      Pomiędzy 18 a 22 maja w Rotterdamie odbędzie się 9 prób generalnych, a w każdej z nich weźmie udział 3500 osób. Chętni do wzięcia udziału będą musieli przedstawić niedawno zrobiony test na obecność SARS-CoV-2 z negatywnym wynikiem. Nie będzie zachowywany dystans, a uczestnicy nie będą nosili maseczek.
      Seria 20 eksperymentów, o wspólnej nazwie Fieldlab, została zorganizowana przez holenderską branżę rozrywkową we współpracy z naukowcami i rządem. Jednak pomysł jest coraz bardziej krytykowany wraz ze wzrostem zakażeń w Holandii.
      Krytyka odnosi skutek. Przed 4 dniami w Bredzie miał się odbyć koncert z 10 000 widzów, jednak po tym, gdy ponad 300 000 osób podpisało petycję sprzeciwiającą się jego organizacji, miasto koncert odwołało. W ubiegłym tygodniu ukazał się też list podpisany przez ponad 350 naukowców, krytykujących Fieldlab za brak przestrzegania odpowiednich standardów naukowych, niejasne procedury oraz nieprzestrzeganie zasad etyki naukowej. Nie są spełnione podstawowe warunki i standardy naukowości. Koncert na 10 000 osób nie jest wolny od ryzyka, nawet jeśli są wymagane testy. Jeśli byłby wolny od ryzyka, cały ten test byłby niepotrzebny, stwierdza metodolog nauki Caspar van Lissa z Uniwersytetu w Utrechcie.
      Z kolei Bas Kolen, badacz z Uniwersytetu Technologicznego w Delft, który jest zaangażowany w Fieldlab mówi, że celem eksperymentu jest stwierdzenie, czy organizacja imprez masowych niesie ze sobą ryzyko akceptowalne dla uczestników i organizatorów. Dwa pierwsze eksperymenty tego typu, wystawienie sztuki teatralnej i konferencja biznesowa, w których uczestniczyło po 500 osób, odbyły się w lutym. Wtedy też naukowcy stwierdzili, że gdy wymagane jest okazanie negatywnego testu, a sala jest dobrze wentylowana, to ryzyko infekcji może wynosić 1:100 000 uczestników na godzinę, czyli jest takie, jak przy pozostawaniu w domu. Później odbywały się kolejne imprezy, w tym mecz z udziałem 5000 kibiców.
      Grupa etyków z Centrum Medycznego Radbound University stwierdziła, że Fieldlab nie wymaga zgody medycznego komitetu ds. etyki, gdyż nie spełnia prawnej definicji badań medycznych. Autorzy eksperymentu mówią, że przestrzegają zasad etycznych dla nauk społecznych, co oznacza, że uczestnicy eksperymentu wyrażają świadomą zgodę na uczestnictwo, a organizatorzy oceniają potencjalny negatywny wpływ na uczestników i społeczeństwo.
      Andreas Voss, specjalista chorób zakaźnych na Radbound University, który kieruje eksperymentem, mówi, że kupując bilet uczestnicy eksperymentu stwierdzają, że nie pociągną Fieldlab do odpowiedzialności jeśli zachorują.
      Krytycy Fieldlab kwestionują też twierdzenia twórców eksperymentu, zapewniających, że jest on bezpieczny. Uczestnicy Fieldlab mają obowiązek wykonać test w 5 dni po imprezie i co najmniej 25 osób miało test pozytywny. Nie wiadomo, czy zaraziły się one podczas eksperymentu. Ponadto problemem nie jest sama liczba takich osób, a liczba ich kontaktów.
      Wspomniany już Bas Kolen, który specjalizuje się w badaniu ryzyka powodzi, przyznaje, że użyty w Fieldlab model ma wiele założeń i ograniczeń. Zakłada się np., że testy wykryją 95% zarażonych, nie bierze się pod uwagę tego, że niektórzy mogą być superroznosicielami z wyjątkowo dużą liczbą kontaktów społecznych. Takie rzeczy chcemy zbadać w kolejnych etapach, stwierdza. Jednak Caspar van Lissa nie zgadza się z takim podejściem. Jego zdaniem tego typu rzeczy należy określić przed rozpoczęciem eksperymentu, by móc stwierdzić, na ile jest on bezpieczny.
      W tej chwili nie wiadomo, czy zapowidane eksperymenty podczas Eurowizji się odbędą. Organizatorzy koncertu chcą bowiem wiedzieć, jaka będzie reakcja społeczna.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fraza „myślenie nie boli” właśnie nabrała dosłownego znaczenia. Grupa kanadyjskich naukowców przeprowadziła niedawno eksperyment, który wykazał, że ludzie często wolą poddać się fizycznemu bólowi niż wykonać złożone zadanie umysłowe. I to dosłownie – badani mieli do wyboru ból albo myślenie.
      Wysiłek poznawczy jest opisywany jako nieprzyjemne doświadczenie i ludzie starają się go unikać. Stąd też obecność w różnych językach fraz „głowa mnie boli od myślenia” czy „myślenie nie boli”. Jako, że jest to doświadczenie awersyjne, wymaga to oceny korzyści wynikających z większego wysiłku umysłowego, w porównaniu z korzyściami z podjęcia mniej wymagających działań. A jako, że intensywne myślenie jest metaforycznie łączone z bólem – co widać na powyższej podanych przykładach powszechnie używanych zdań – Kanadyjczycy postanowili sprawdzić, czy istnieje pozametaforyczny związek pomiędzy bólem a myśleniem. Zbadnia tej kwestii podjęli się Todd A Vogel, A Ross Otto i Mathieu Roy z McGill University oraz Zachary M Savelston z Carleton University.
      Uczestnicy eksperymentu mieli do wyboru albo wykonanie zadania umysłowego, albo doświadczenie fizycznego bólu. Można by pomyśleć, dlaczego ktoś miałby wybrać ból. Zadania umysłowe mogą być nudne, mało atrakcyjne, ale są bezbolesne, mówi Vogel. Bardzo jednak myliłby się ten, kto sądzi, że dla uniknięcia bólu ludzie wolą chwilę pomyśleć. W rzeczywistości jest zupełnie inaczej.
      Wśród 39 badanych tylko 1 osoba zawsze wybierała zadanie umysłowe. Każda z pozostałych 38 osób przynajmniej raz wybrała ból zamiast konieczności myślenia.
      Pomysł, że ludzie gdy tylko mogą unikają wysiłku umysłowego nie jest nowy. Ideę ten dyskutował już wpływowy XIX-wieczny psycholog William James, przypomina profesor Amitai Shenav z Brown University. Nie ma w tym nic dziwnego, wysiłek umysłowy może być niezwykle wyczerpujący. Równie mocno co wysiłek fizyczny.
      Specjaliści nie od dzisiaj zastanawiają się, jak daleko ludzie mogą się posunąć, byle tylko nie myśleć. Wcześniej wykonywano eksperymenty mające na celu zbadanie tej kwestii. Jednak w eksperymentach tych porównywano większy i mniejszy wysiłek umysłowy lub też płacono za podjęcie większego wysiłku, badając, jak bardzo musi rosnąć cena w relacji do wzrostu poziomu trudności. Kanadyjczycy wprowadzili jednak zupełnie nowy element – fizyczny ból. Wykonywanie zadań poznawczych jest negatywnym odczuciem. W tym eksperymencie porównano je wprost z innym eksperymentem poznawczym. To bardzo elegancka metoda, mówi Shenav.
      Na potrzeby badań naukowcy najpierw określili indywidualny próg bólu każdego z uczestników, wykorzystując w tym celu stymulator termosensoryczny. To urządzenie, które nagrzewa się do konkretnej temperatury, a następnie szybko chłodzi, by nie dopuścić do uszkodzenia skóry. Uczestnicy badań musieli określić na skali 0–100 intensywność odczuwanego bólu, gdzie 0 oznaczało brak bólu, a 100 – bardzo intensywny ból.
      Później uczestnicy mieli do wykonania test pamięciowy N-back. Służy on do oceny wzrokowej pamięci operacyjnej. Osobie badanej na ekranie komputera pokazuje się cyfra lub litera (Kanadyjczycy użyli liter), jej zadaniem jest jak najszybsze naciśnięcie klawisza odpowiadającego temu, co pojawiło się na ekranie. Test ten na poziomie 0 jest banalnie prosty. Jednak wraz z kolejnymi poziomami pojawiają się problemy. Poziom 1-back oznacza bowiem, że gdy pojawia nam się litera, musimy nacisnąć klawisz, odpowiadający literze, która ją poprzedzała. Przy poziomie 2-back musimy nacisnąć klawisz litery, jeszcze wcześniejszej. Innymi słowy, musimy sobie przypomnieć, jaką literę widzieliśmy 2 litery wcześniej i taki klawisz nacisnąć.
      Vogel i jego koledzy użyli testu 5-back. Wykorzystano też, jak pamiętamy, ból. Używając informacji o progu bólu każdego z uczestników badania określono dla każdego z nich pięć poziomów od 10 do 80 ze wspomnianej wcześniej 100-punktowej skali. Test N-back zostały losowo wymieszane z progami bólu każdego z badanych. I każdy z nich mógł zdecydować, czy chce wykonywać zadanie umysłowe, czy woli doświadczyć bólu.
      Jeśli jest wybór pomiędzy największym natężeniem bólu a najmniejszym wysiłkiem umysłowym, to spodziewamy się, że ludzie wybiorą wysiłek umysłowy. I prawdopodobnie prawdziwa będzie też sytuacja odwrotna, czyli wybór bólu jeśli jest to ból o najmniejszym natężeniu gdy trzeba wykonać najbardziej wymagającą pracę umysłową, mówi Vogel. Naukowców jednak interesowało to, co mieści się pomiędzy tymi ekstremami. Co się dzieje, gdy dochodzi do równowagi bólu i wysiłku? Co wybierają ludzie?
      Uśrednione wyniki badań wykazały, że ludzie wybierają ból w 28% przypadków. Uśrednienie to nie bierze pod uwagę różnych poziomów bólu i wysiłku umysłowego. Jeśli zaś przyjrzymy się poszczególnym poziomom bólu, to okazuje się, że gdy do wyboru był największy ból lub test 4-back, ludzie wybierali ból średnio w 28% przypadków. Na pośrednim poziomie, gdzie ból i wysiłek się równoważył, doszło też do równego rozkładu wyboru. Jest pewien punkt, w którym ludzie równo oceniają ból i wysiłek umysłowy. To punkt, w którym wybór pomiędzy nimi równie dobrze mógłby zostać dokonany za pomocą rzutu monetą, mówi Vogel.
      Uczeni dokonali też pewnej interesującej obserwacji. Otóż, gdy uczestnicy badań dokonywali wyboru ból czy myślenie, to tam, gdzie wybrali myślenie wybór był dokonywany bardzo szybko, jednak gdy ostatecznie wybierali ból, dłużej się nad tym zastanawiali. To może wskazywać, że chęć uniknięcia bólu jest potrzebą bardziej podstawową niż chęć uniknięcia wysiłku umysłowego. Natychmiast zabieramy ręce znad rozgrzanego palnika, nie musimy o tym myśleć, mówi Vogel. To błyskawiczne działanie. Natomiast uniknięcie wysiłku umysłowego prawdopodobnie wymaga bardziej aktywnego procesu podejmowania decyzji.
      Oczywiście są sytuacje, gdy wysiłek umysłowy sprawia nam przyjemność. Celowo angażujemy się w rozwiązywanie krzyżówek czy sudoku. Ci uczestnicy opisywanego tutaj eksperymentu, którzy lubili tego typu rozrywki umysłowe, z większym prawdopodobieństwem wybierali test. Jednak w miarę, jak trudność N-back rosła, nawet i oni czasami woleli ból.
      W przyszłości podobne badania można prowadzić korzystając z testów badających różne rodzaje wysiłku umysłowego skojarzone z różnymi nieprzyjemnymi odczuciami, nie tylko bólem, ale nieprzyjemnymi zapachami, dźwiękami czy sytuacjami społecznymi. Wiemy, że w kwestii ludzkiej psychiki i dokonywania wyborów jest wiele jeszcze do zrobienia. Dość przypomnieć eksperyment z 2014 roku, gdy ludzie woleli zostać porażeni prądem o średnim natężeniu niż samotnie siedzieć w pokoju z własnymi myślami w głowie. Innym interesującym aspektem może być badanie w ten sposób różnic pomiędzy osobami zdrowymi, a osobami cierpiącymi na różne choroby, to zaburzeń nastrojów po chroniczny ból.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Reaktor MARIA jest jednym z głównych ośrodków napromieniania mikrosfer zawierających radioaktywny holm, które są stosowane w terapii nowotworów wątroby. Technologia opracowana w NCBJ na zlecenie firmy Quirem Medical – globalnego producenta mikrosfer teraperutycznych QuiremSpheres – służy pacjentom w kilkunastu wyspecjalizowanych klinikach w Europie.
      Mikrosfery o średnicy ok. 30 mikrometrów wykonane z polilaktydu holmu (polimeru kwasu mlekowego) służą do miejscowej radioterapii, głównie w przypadku nowotworów wątroby. Na etapie produkcji umieszcza się w nich stabilny izotop holm-165, który poprzez bombardowanie neutronami można przekształcić w radioaktywny izotop holm-166. Holm-166 ma bardzo przydatne właściwości. Jego czas życia jest stosunkowo krótki (ok. 27 godzin). Rozpadając się, emituje promieniowanie beta o energii ok. 2 MeV, którego zasięg w tkankach wynosi kilka milimetrów. Radioaktywny holm, uwięziony w mikrosferach, podaje się głównie pacjentom z zaawansowanymi nowotworami wątroby, wstrzykując zawiesinę z mikrogranulkami do odpowiednich naczyń krwionośnych prowadzących je do miejsca lokalizacji nowotworu. Promieniowanie beta, działając na dobrze zlokalizowanym obszarze, niszczy komórki rakowe, pozostawiając nietkniętą większość zdrowej części narządu. Procedura ta nazywana jest radioembiolizacją. Stosuje się ją w przypadku nowotworów nieoperacyjnych i niewrażliwych na chemioterapię. Holm ma dwie dodatkowe zalety: emituje także promieniowanie gamma, co pozwala precyzyjnie zlokalizować miejsca i ilości wprowadzonej do organizmu substancji radioaktywnej. Jest też paramagnetykiem, co stwarza dodatkowe możliwości m.in. śledzenia podanego specyfiku w organizmie.
      Jedyne stosowane obecnie w terapii mikrosfery zawierające holm są wytwarzane i dystrybuowane przez niderlandzką firmę Quirem Medical B.V. jako QuiremSpheres®. W 2017 r. zespół naukowców pracujących w reaktorze MARIA we współpracy z firmą Quirem Medical przystąpił do opracowania technologii napromienia mikrosfer holmowych. Zadanie wymagało dostosowania infrastruktury reaktora, a także wypracowania nowych rozwiązań technologicznych oraz procedur i nowej metodologii napromieniania materiałów tarczowych – opowiada dr inż. Rafał Prokopowicz, Kierownik Zakładu Badań Reaktorowych. Powodem tego jest fakt, że każda fiolka z mikrosferami zawiera naważkę przygotowaną do terapii konkretnego pacjenta i należy ją napromienić w taki sposób, aby w wyznaczonych dniu i godzinie terapii miała odpowiednią aktywność, ustaloną dla danego pacjenta”
      Każdy materiał podczas napromieniania podgrzewa się od promieniowania. Mikrosfery z poliaktydu są bardzo wrażliwe – ich degradacja może rozpocząć się już po osiągnięciu 60° C. Tymczasem muszą one zachować swój kształt podczas napromieniania, aby mogły swobodnie dostać się do leczonego miejsca po podaniu pacjentowi. „W celu poprawy warunków napromieniania mikrosfer, udoskonaliliśmy układ chłodzenia umieszczanych w reaktorze zasobników z mikrosferami” – wyjaśnia naukowiec. Konieczne było także umieszczenie w rdzeniu reaktora, tuż obok miejsca napromieniania, specjalnych detektorów promieniowania monitorujących cały czas warunki napromieniania. Stworzyliśmy specjalny algorytm i oparty na nim program komputerowy, który na podstawie sygnałów z detektorów ułatwia bardzo precyzyjne wyznaczanie czasu napromieniania poszczególnych zasobników z mikrosferami, tak aby uzyskały one aktywność wymaganą w czasie terapii. Jest to kluczowe narzędzie, niezbędne do prawidłowego napromieniania mikrosfer, ponieważ gęstość strumienia neutronów w reaktorze fluktuuje przez cały czas jego pracy.
      Naukowcy NCBJ we współpracy z Quirem opracowali także specjalne fiolki do napromieniania mikrosfer. Od nazwy reaktora zostały one nazwane fiolkami typu MARIA. Tajemnicą tych fiolek jest specjalne wyprofilowanie dna, które powoduje, że umieszczony w pojemniku materiał układa się w cienką, stosunkowo dobrze chłodzoną warstwę. Pojemniki plastikowe umieszcza się w zasobnikach metalowych, wprowadzanych później do kanałów pionowych reaktora – wyjaśnia inż. Łukasz Murawski, Kierownik Działu Technologii Napromieniań. Aby zapewnić jeszcze lepsze chłodzenie, we wnętrzu zasobnika powietrze zastępuje się helem. Tak przygotowane zasobniki wędrują pocztą hydrauliczną do miejsca napromieniania, a po odpowiednim czasie napromieniania w ten sam sposób są transportowane do komór gorących, gdzie przepakowywane są do pojemników transportowych. Dalej specjalna firma transportowa przewozi je ekspresowo do szpitala, gdzie czeka już pacjent. Najczęściej są to szpitale niemieckie i niderlandzkie. Czas gra tu wielką rolę, gdyż po upływie jednego dnia aktywność preparatu spada już o połowę. Ponieważ zapotrzebowania na realizację terapii pojawiają się z niewielkim wyprzedzeniem, zespół reaktora niemal przez całą dobę, 7 dni w tygodniu musi być gotowy do błyskawicznego przygotowania i przeprowadzenia napromieniania oraz ekspedycji mikrosfer. Wymaga to zaangażowania i ciągłej gotowości wielu specjalistów.
      Obecnie w reaktorze MARIA napromienia się fiolki z mikrosferami na potrzeby ponad 100 pacjentów rocznie. Są one wykorzystywane w kilkunastu klinikach rozsianych po całej Europie, m.in. w Roterdamie, Nijmegen, Utrechcie, Dreźnie, Magdeburgu, Jenie, Bazylei, Rzymie, Pizie, Barcelonie, Madrycie, Porto i innych. Od ponad trzech lat reaktor MARIA jest jednym z niewielu, a jednocześnie jednym z głównych miejsc napromieniowywania mikrosfer dla firmy Quirem. W związku z rosnącym zapotrzebowaniem na terapie radioembolizacji z zastosowaniem Ho-166, współpraca ta będzie kontynuowana i rozwijana – zapewnia dr inż. Michał Gryziński, dyrektor Departamentu Eksploatacji Obiektów Jądrowych NCBJ. Mamy nadzieję na wybudowanie przy reaktorze MARIA laboratorium, które pozwoli NCBJ stać się centrum dystrybucji mikrosfer QuiremSpheres w Europie Wschodniej oraz w Polsce, gdzie na razie ta forma terapii nie jest jeszcze dostępna.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obliczenia wykonane przez polskich naukowców we współpracy z grupą uczonych z Dubnej (Rosja) pozwalają przewidywać z niedostępną dotąd dokładnością szanse wytworzenia nowych izotopów pierwiastków superciężkich. W pracy opublikowanej w prestiżowym czasopiśmie Physics Letters B zaprezentowali oni najbardziej obiecujące kanały produkcji szerokiej gamy izotopów o liczbie atomowej od 112 do 118 w różnych konfiguracjach zderzeń jądrowych prowadzących do ich powstania. Przewidywania wydają się być wiarygodne, jako że potwierdzają je ze znakomitą zgodnością dane eksperymentalne dostępne dla procesów już przebadanych.
      W pracy, która ukaże się w październikowym numerze Physics Letters B, międzynarodowy zespół naukowy zaprezentował nowe, niezwykle bogate i obiecujące wyniki przewidywań dla prawdopodobieństw (przekrojów czynnych) produkcji izotopów najcięższych pierwiastków o liczbach atomowych od 112 do 118. Obliczenia zostały przeprowadzone dla procesów fuzji indukowanej pociskami jądrowymi wapnia Ca-48 zgodnie z planami przyszłych eksperymentów. Polscy uczeni – prof. Michał Kowal, kierownik Zakładu Fizyki Teoretycznej Narodowego Centrum Badań Jądrowych i dr Piotr Jachimowicz z Uniwersytetu Zielonogórskiego – dostarczyli wyniki swoich rachunków uwzględniających niebrane do tej pory efekty, a mające ogromny wpływ na dokładność ostatecznie otrzymywanych wyników.
      Do tej pory, gdy liczono prawdopodobieństwa wytwarzania superciężkich izotopów, w ogóle nie brano pod uwagę efektów związanych z powłokowym charakterem punków siodłowych w rozszczepieniu jąder atomowych – wyjaśnia prof. Kowal. Wszyscy badacze zakładają brak efektów kwantowych dla tej kluczowej w procesie rozszczepienia konfiguracji jądrowej. My te efekty uwzględniliśmy, a co więcej podaliśmy przepis ich tłumienia wraz ze wzrostem temperatury tworzącego się superciężkiego układu jądrowego. Takie obliczenia nie były dotąd prezentowane nigdzie w literaturze.
      Aby uzyskać swój wynik, uczeni posłużyli się metodą statystyczną, generując miliony stanów nad stanem podstawowym i wspominanym punktem siodłowym. Metodę i wyniki opisali szczegółowo w równolegle skierowanej do publikacji pracy. Mając te wyniki, można było dość prosto policzyć prawdopodobieństwo przetrwania jąder wytworzonych w wyniku konkretnego zderzenia pocisku i odpowiednio dobranej tarczy – opowiada prof. Kowal. Po prostu, korzystając z podstawowej definicji prawdopodobieństwa przetrwania jądra złożonego, właściwie bez stosowania przybliżeń, oszacowaliśmy współzawodnictwo rozszczepienia z rożnymi innymi kanałami rozpadu.
      Badając stabilność i analizując możliwe kanały rozpadu tworzonych jąder, badacze uwzględnili zarówno rozpady poprzez emisję neutronów, jak i protonów oraz cząstek alfa. Wyniki zaprezentowane w pracy bardzo dobrze zgadzają się z danymi uzyskanymi w przeprowadzonych już eksperymentach. Jednocześnie autorzy wskazują na najbardziej obiecujące kanały produkcji nowych, niewytwarzanych dotąd izotopów, które mogłyby być wykorzystane w przyszłych planowanych eksperymentach.
      Rewelacyjna zgodność z istniejącymi funkcjami wzbudzania (prawdopodobieństwami syntezy jąder superciężkich) pozwala mieć zaufanie do zaprezentowanych prognoz i przewidywań. Szczególnie obiecujące dla niektórych kombinacji tarcza-pocisk okazują się kanały z emisją jednego protonu lub jednej cząstki alfa. Ten wynik jest intrygujący, gdyż może prowadzić do zupełnie nowych, nieznanych dziś izotopów jąder superciężkich. Ponieważ zaproponowane kanały reakcji nie są nadmiernie egzotyczne, a raczej łatwo dostępne w eksperymencie, już wkrótce okaże się, czy przewidywania uczonych co do możliwości produkcji tych nowych wyjątkowo ciężkich izotopów się potwierdzą.
      Już przed laty informowaliśmy, że ten sam zespół naukowy stwierdził, iż izomery pierwiastków superciężkich mogą być znacznie bardziej stabilne niż dotąd sądzono.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jak się okazuje slime, zwany przez polskie dzieci „glutem” czy „glutkiem”, może być nie tylko zabawką dla dzieci, ale również przedmiotem poważnych eksperymentów naukowych. Bardzo poważnych, bo prowadzonych na Międzynarodowej Stacji Kosmicznej. Latem ubiegłego roku stacja Nickelodeon wysłała na ISS około dwóch litrów gluta. Celem projektu Slime in Space było przede wszystkim stworzenie materiału edukacyjnego dla nauczycieli. Jednak z okazji postanowili skorzystać naukowcy specjalizujących się badaniu różnych materiałów.
      Inżynier Mark Weislogel z Pennsylvania State University mówi, że gdy dowiedział się o projekcie Nickelodeona, nie mógł przegapić takiej okazji. To tak unikatowa ciecz, że nie mogliśmy przegapić okazji do jej zbadania, mówi. Wraz ze swoją koleżanką, Rihaną Mungin, opracowali serię ośmiu eksperymentów, które miały zostać przeprowadzone na ISS.
      Nie zawsze zdarza się, byśmy w ramach swoich obowiązków na stacji kosmicznej mogli przez kilka godzin bawić się slimem, podczas gdy zespół naziemny mówi nam, byśmy przez strzykawkę opryskali slimem kolegę lub napełnili nim balon, mówi astronautka Christina Koch.
      Po co jednak wysyłać gluta w kosmos? Otóż dlatego, że to ciecz o lepkości 20 000 razy większej od wody. To zaś oznacza, że slime zachowuje się w warunkach mikrograwitacji w zupełnie niespodziewany sposób i pozwala nam lepiej zrozumieć jak ciecze o dużej lepkości zachowują się w przestrzeni kosmicznej. To zaś pozwoli na lepsze projektowanie systemów, które oryginalnie powstały w warunkach ziemskiej grawitacji. Jak wyjaśniają autorzy badań, bez grawitacji bąbelki w płynie nie unoszą się do góry, krople nie padają, więc cały sprzęt taki jak boilery, kondensatory, systemy nawadniania czy ekspresy do kawy, działają zupełnie inaczej.
      Co interesujące, na Ziemi definiujemy ciecz, jako coś, co przyjmuje kształt pojemnika, mówi Koch. Jednak w warunkach mikrograwitacji woda tworzy sferę. Musimy więc przemyśleć definicję materii w przestrzeni kosmicznej. Ten eksperyment wspaniale pokazuje nam, jak mikrograwitacja wpływa na nasze rozumienie rzeczy, szczególnie takich, które na Ziemi przyjmujemy za oczywiste, dodaje.
      Eksperymenty wykazały na przykład, że na stacji kosmicznej slime również tworzy sferę. W porównaniu z wodą dzieje się to bardzo szybko. Woda, przez swoją niższą lepkość, odkształca się jeszcze długo po tym, jak slime tworzy idealną sferę.
      Podczas innego eksperymentu wypełniano glutem balony, a następnie je przebijano. Astronauci spodziewali się eksplozji slime. Okazało się jednak, że po przebiciu balonu glut ledwo się przemieszczał, zachowując nadany kształt.
      Jeden z najbardziej interesujących eksperymentów polegał na użyciu slime'a i dwóch łopatek pokrytych warstwą hydrofobową. Astronauci ściskali gluta między łopatkami, a następnie z różną prędkością oddalai łopatki od siebie. Slime przyczepiał się do powierzchni obu łopatek. Gdy były one oddalane powoli, przez chwilę glut się rozciągał, a następnie pękał, pozostając przywarty do obu łopatek. Gdy zaś łopatki rozwierano szybko, slime tworzył znacznie dłuższy „most”, również pękał, ale rozrywał się na kilka kawałków, które tworzyły sfery pomiędzy łopatkami. Eksperyment ten dobrze obrazuje, dlaczego slime jest cieczą nieniutonowską. Narusza on bowiem niutonowskie prawo lepkości, które mówi, że lepkość cieczy nie zmienia się pod wpływem przyłożonej siły. Tymczasem tutaj widać, że w zależności od siły, slime reaguje inaczej.
      Jak zauważają eksperci, badania nad zachowaniem cieczy w warunkach mikrograwitacji mogą zostać wykorzystane np. do stworzenia systemów przemieszczania płynów bez pomocy pomp.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...