Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

POLAR-2, projekt NCBJ, poleci w kosmos. Pomoże w badaniu rozbłysków gamma

Rekomendowane odpowiedzi

W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ).

Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji.

Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument.

Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor.

Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk.

Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2019 roku polska astronom Anna Kapińska odkryła pierwszego kosmicznego ORC-a, czyli dziwny krąg radiowy (odd radio circle – ORC). Teraz naukowiec z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, doktor Pratik Dabhade, odegrał kluczową rolę w odkryciu najbardziej odległego i największego z ORC-ów.
      Dziwne kręgi radiowe to wielkie chmury promieniowania radiowego w kształcie pierścieni, składające się z naładowanej plazmy. Niektóre z nich są naprawdę imponujące. Nowo odkryty RAD J131346.9+500320 znajduje się w odległości 7 miliardów lat świetlnych i ma ponad milion lat świetlnych średnicy. To 10-krotnie więcej niż średnica naszej galaktyki. Co więcej, obiekt tej jest zaledwie drugim dziwnym kręgiem radiowym, w którym występują dwa przecinające się pierścienie.
      Obiekt został odkryty dzięki obywatelskiemu projektowi naukowemu RAD@home Astronomy Collaboratory, przy którym współpracują naukowcy i wolontariusze-amatorzy. Wspólnie analizowali dane uzyskane z radioteleskopu LOFAR, najbardziej czułego urządzenia do pomiaru fal radiowych o niskich częstotliwościach. Składa się on z setek tysięcy prostych anten rozsianych po całej Europie. Wspólnie działają one jak wielki interferometr.
      Odkrywcy ORC-a to grupa kierowana przez naukowców z Uniwersytetu w Mumbaju. Efektem ich pracy jest nie tylko znalezienie dziwnego kręgu radiowego, ale również dwóch innych wielkich struktur. Pierwsza z nich to radio RAD J122622.6+640622, olbrzym o średnicy 3 milionów lat świetlnych. Jeden z jej dżetów – strumieni materii wyrzucanej z centrum – nagle się zagina i tworzy pierścień radiowy o średnicy około 100 000 lat świetlnych. Druga z radiogalaktyk, RAD J142004.0+621715, ma 1,4 miliona lat średnicy i również w jej przypadku jeden z dżetów tworzy na końcu pierścień. Obie galaktyki znajdują się w zatłoczonych gromadach galaktyk. To prawdopodobnie oddziaływanie z otaczającą je materią o temperaturze milionów stopni wpływa na kształt ich dżetów.
      Szczegóły na temat odkrycia opublikowano w artykule RAD@home discovery of extragalactic radio rings and odd radio circles: clues to their origins.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...