Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Komórki łożyska regenerują uszkodzone serce
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Finlandii i Wielkiej Brytanii przeprowadzili pionierskie badania, w wyniku których stwierdzili, że bezpośrednią przyczyną zawału mięśnia sercowego może być infekcja. Taki pogląd rzuca wyzwanie dotychczasowej wiedzy dotyczącej patologii tej choroby. Obecnie panuje przekonanie, że główną przyczyną zawału jest miażdżyca tętnic wieńcowych, powstająca w wyniku odkładania się cholesterolu i innych tłuszczów. Jeśli zaś potwierdziłoby się, że główną przyczyną jest infekcja, otworzyłoby to drogę do rozwoju nowych metod leczenia, być może nawet powstałyby szczepionki zapobiegające zawałom.
Autorzy najnowszych badań zauważyli, że na odkładających się na tętnicy blaszkach miażdżycowych może przez lata tworzyć się bakteryjny biofilm. Uśpione bakterie w jego wnętrzu chronione są przed układem odpornościowym czy antybiotykami. Biofilm może zostać aktywowany przez infekcję wirusową czy inny impuls. Prowadzi to do proliferacji bakterii z biofilmu i pojawienia się reakcji zapalnej. Reakcja ta może spowodować pęknięcia włóknistej powierzchni blaszki, utworzenia się skrzepliny i zawału.
Od dawna podejrzewano, że bakterie są zaangażowane w chorobę niedokrwienną serca, jednak brakowało na to dowodu. Podczas naszych badań odkryliśmy DNA licznych bakterii jamy ustnej wewnątrz blaszek miażdżycowych, mówi główny autor badań, profesor Pekka Karhunen z fińskiego Uniwersytetu w Tampere.
Naukowcy zbadali blaszki miażdżycowe 121 osób, które zmarły na zawał serca i 96 osób, u których przeprowadzono endarterektomię, zabieg usunięcia blaszki miażdżycowej. Analizy wykazały, że najpowszechniej występującym rodzajem bakterii są paciorkowce (Streptoccocus). Ich DNA znaleziono w 42,1% zmarłych i 42,9% żywych pacjentów.
Wnioski z badań potwierdzono obserwując, jak bakterie uwolnione z biofilmu, zostały rozpoznane przez układ odpornościowy, który doprowadził do stanu zapalnego i pęknięcia blaszki.
Szczegóły zostały opublikowane w piśmie Journal of the American Heart Association.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Northwestern University powstał rozrusznik serca tak mały, że zmieści się wewnątrz strzykawki i można go łatwo wszczepić do organizmu. Miniaturowy rozrusznik może pracować z każdym sercem, jednak szczególnie nadaje się dla noworodków. Co więcej, wszystkie jego elementy są biokompatybilne i rozrusznik – przeznaczony dla pacjentów, którzy potrzebują go tymczasowo – rozpuszcza się w organizmie, nie ma więc potrzeby przeprowadzania zabiegu jego usunięcia.
Rozrusznik mniejszy od ziarenka ryżu współpracuje z niewielkim, elastycznym, bezprzewodowym urządzeniem, które przyczepia się do klatki piersiowej pacjenta. Gdy urządzenie wykryje nieregularny rytm serca, wysyła krótki impuls świetlny, który pobudza rozrusznik.
Kardiologia pediatryczna pilnie potrzebuje tymczasowych rozruszników serca. Tutaj miniaturyzacja jest niezwykle ważna, im urządzenie mniejsze, tym lepiej, wyjaśnia John A. Rogers, który kierował pracami. Motywowała nas chęć opracowania rozrusznika dla dzieci. Około 1% dzieci rodzi się z wadami serca. Dobra wiadomość jest taka, że po zabiegu chirurgicznym potrzebują one rozrusznika jedynie przez jakiś czas. Po około 7 dniach ich serca działają poprawnie. Ale tych 7 dni jest absolutnie kluczowych. Teraz możemy umieścić rozrusznik na sercu dziecka i pobudzać go za pomocą miękkiego, delikatnego urządzenia. I nie potrzebujemy kolejnego zabiegu, by rozrusznik usunąć, dodaje kardiolog eksperymentalny Igor Efimov.
Wielu pacjentów wymaga rozrusznika po operacji serca. Albo oczekują w ten sposób na docelowy stały rozrusznik, albo potrzebują go tymczasowo w okresie rehabilitacji. Obecnie podczas operacji do serca podłącza się elektrody, a wyprowadzone na zewnątrz kable łączone są z rozrusznikiem. Gdy taki czasowy rozrusznik nie jest już potrzebny, lekarze wyciągają elektrody. Kable wystają z ciała, a lekarz je wyciąga. Jednak mogą one zostać otoczone tkanką bliznowatą, więc podczas wyciągania może dojść do uszkodzenia mięśnia sercowego. Tak właśnie zmarł Neil Armstrong. Miał tymczasowy rozrusznik po operacji bypassów. Gdy usunięto elektrody, doszło u niego do krwotoku wewnętrznego, wyjaśnia Efimow.
Dlatego właśnie naukowcy z Northwestern stworzyli rozpuszczalny rozrusznik, który został opisany w 2021 roku na łamach Nature Biotechnology. Kardiolodzy chcieli mieć jednak mniejsze urządzenie, które można by łatwiej implementować i które lepiej nadawałoby się do użycia u małych pacjentów. Nasz oryginalny rozpuszczalny rozrusznik działał dobrze. Był cienki, elastyczny i w pełni się wchłaniał w organizmie. Jednak rozmiar jego anteny odbiorczej ograniczał możliwości miniaturyzacji. Dlatego też pracując przy nowym rozruszniku zrezygnowaliśmy z częstotliwości radiowej do bezprzewodowego sterowania urządzeniem, a użyliśmy światła. To pozwoliło na znaczące zmniejszenie rozmiarów urządzenia, mówi Rogers.
Kolejnym elementem, który pozwolił na dalszą miniaturyzację, było zastosowanie innego źródła zasilania. W miejsce NFC (near-field communications) użyto ogniwa galwanicznego. To prosta bateria zamieniająca energię chemiczną w elektryczną. Rozrusznik korzysta z dwóch elektrod zbudowanych z różnych metali. To one przekazują impuls elektryczny do serca. A energię czerpią z płynów ustrojowych, które je otaczają. Gdy rozrusznik jest wszczepiany, otaczające go płyny ustrojowe pełnią rolę elektrolitu. Na drugiej stronie rozrusznika znajduje się bardzo mały przełącznik, aktywowany za pomocą światła. Gdy do przełącznika dociera impuls świetlny wysłany przez skórę pacjenta, przeskakuje on z pozycji „wyłączony” na „włączony” i serce pobudzane jest za pomocą impulsu elektrycznego generowanego przez elektrody, wyjaśnia Rogers.
System korzysta z podczerwieni, która w sposób bezpieczny penetruje organizm. Gdy przyczepione do piersi pacjenta urządzenie wykryje nieprawidłowy rytm, uruchamia diodę, która błyska w rytm prawidłowej pracy serca. Mimo, że nowatorski rozrusznik jest bardzo mały, ma 1,8 mm szerokości, 3,5 mm długości i 1 mm grubości, dostarcza taki sam impuls jak pełnowymiarowe rozruszniki. Serce wymaga jedynie niewielkiej stymulacji elektrycznej. Minimalizując rozrusznik, znakomicie uprościliśmy procedurę jego wszczepienia, zmniejszamy obciążenia i ryzyko dla pacjenta, a dzięki temu, że rozrusznik rozpuszcza się organizmie, nie istnieje konieczność jego usuwania i ryzyko z tym związane, stwierdza Rogers.
Na tym jednak nie koniec zalet minirozrusznika. Jako że urządzenie jest tak małe, można wszczepić kilka rozruszników w różne regiony serca i każdym z nich sterować za pomocą światła o innej długości fali. To zaś pozwala na uzyskanie bardzo skomplikowanej synchronizacji. W szczególnych przypadkach można w różnym rytmie pobudzać różne regiony serca i radzić sobie w ten sposób z arytmiami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Siedzący tryb życia zwiększa ryzyko wielu chorób serca, nawet gdy nasza aktywność fizyczna odpowiada zalecanym normom. Badacze z Mass General Brigham zauważyli, że ryzyko wystąpienia migotania przedsionków, zawału, niewydolności serca oraz zgonu z powodu chorób układu krążenia jest wyższe, a ryzyko wystąpienia niewydolności serca i zgonu, jest aż o 40–60 procent wyższe, jeśli prowadzimy siedzący tryb życia dłużej niż 10,6 godziny na dobę. I nie ma tutaj znaczenia, ile jak bardzo poza tym jesteśmy aktywni fizycznie.
Siedzący tryb życia jest tutaj definiowany, jako prowadzona po przebudzeniu aktywność o niskim wydatkowaniu energii, taka jak siedzenie czy leżenie. W czas siedzącego trybu życia nie wlicza się snu. Jeśli przekraczamy te 10,6 godziny, to później nawet zalecana dawka aktywności fizycznej może nie redukować tego ryzyka.
Wielu z nas spędza większość dnia siedząc. I o ile mamy wiele badań pokazujących, jak ważna jest aktywność fizyczna, to niewiele wiemy o konsekwencjach zbyt długiego siedzenia, poza ogólnym stwierdzeniem, że może być ono szkodliwe, mówi główna autorka badań, Ezimamaka Ajufo.
Siedzący tryb życia prowadzą nawet osoby aktywne fizycznie. To bardzo ważna uwaga, gdyż zwykle sądzimy, że jeśli po spędzeniu dnia na siedząco, będziemy ćwiczyli, to w jakiś sposób zniwelujemy niekorzystne skutki siedzenia. Odkryliśmy, że to bardziej skomplikowane, dodaje uczona.
Naukowcy wykorzystali w swojej analizie dane 89 530 osób, które przez tydzień nosiły urządzenie monitorujące ich aktywność. Przyglądali się związkowi pomiędzy typowym dniem tych osób, a przyszłym ryzykiem wystąpienia czterech wspomnianych problemów zdrowotnych. Okazało się, że wiele z negatywnych skutków siedzącego trybu życia występowało też u osób, które spełniały zalecenia o ponad 150 minutach tygodniowo umiarkowanych do intensywnych ćwiczeń fizycznie. O ile bowiem ryzyko migotania przedsionków i zawału serca można w większości zrównoważyć ćwiczeniami, to w przypadku niewydolności i zgonu z powodu chorób układu krążenia, ryzyko można jedynie częściowo zmniejszyć.
Nasze dane pokazują, że lepiej jest siedzieć mniej i ruszać się więcej, a unikanie zbyt długiego siedzenia jest bardzo ważne dla uniknięcia niewydolności serca i zgonu, wyjaśnia Shaan Khurshid. Aktywność fizyczna jest ważna, ale równie ważne jest unikanie długotrwałego siedzenia, dodaje Patrick Ellinor.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University poinformowali na łamach PNAS o stworzeniu nowego materiału wysokiej jakości, który z powodzeniem zregenerował tkankę chrzęstną u dużych zwierząt. Jak mówią wynalazcy, materiał wygląda jak gumowata maź i składa się z sieci molekuł, które naśladują naturalne środowisko tkanki chrzęstnej. Podczas badań podawano go do stawu kolanowego zwierząt. W ciągu sześciu miesięcy zaobserwowano dowody na naprawę zniszczonego stawu, w tym pojawienie się nowej tkanki chrzęstnej zawierającej naturalne biopolimery. Autorzy badań mają nadzieję, że uda im się tak rozwinąć ich materiał, że w przyszłości posłuży on do leczenia chorób degeneracyjnych, urazów sportowych i nie będą już konieczne pełne protezy kolana.
Tkanka chrzęstna to podstawowy element stawów. Gdy zostaje ona uszkodzona, ma to wielki wpływ na ludzkie zdrowie i mobilność. Problem w tym, że u dorosłych tkanka chrzęstna nie ma możliwości regeneracji. Nasza terapia stwarza warunki do takiej regeneracji tkanki, które w naturalny sposób się nie regenerują. Sądzimy, że może to pomóc w rozwiązaniu poważnego problemu medycznego, mówi główny autor badań, Samuel I. Stupp.
Nowy materiał zawiera bioaktywny peptyd łączący się z transformującym czynnikiem wzrostu beta 1 (TGF-β1) – podstawową proteiną odpowiedzialną na rozwój i utrzymanie tkanki chrzęstnej – oraz zmodyfikowany kwas hialuronowy. Wiele osób słyszało o kwasie hialuronowym, gdyż jest to popularny składnik produktów do pielęgnacji skóry. Występuje on naturalnie w wielu tkankach ludzkiego ciała, w tym w stawach i mózgu. Wybraliśmy go, gdyż przypomina naturalne polimery znajdujące się w tkance chrzęstnej, dodaje uczony. Jego zespół zintegrował bioaktywny peptyd i chemicznie zmodyfikowany kwas hialuronowy tak że doszło do spontanicznego utworzenia nanowłókien, które połączyły się w sposób naśladujący naturalną architekturę tkanki chrzęstnej. W ten sposób powstało rusztowanie, na którym mogą wesprzeć się komórki, by zregenerować tkankę chrzęstną. A do tej regeneracji zachęcają bioaktywne komponenty, wysyłające do organizmu odpowiednie sygnały.
Materiał został przetestowany na owcach. Wybrano te zwierzęta, gdyż posiadają złożony stan kolanowy, który ma podobny rozmiar i znosi podobne obciążenia co staw ludzki. Ponadto ich tkanka chrzęstna niezwykle trudno ulega regeneracji. Owcom wstrzyknięto materiał w staw kolanowy. Wypełnił on uszkodzone przestrzenie i indukował regenerację uszkodzonej tkanki.
Stupp ma nadzieję, że w przyszłości materiał ten zostanie wykorzystany podczas zabiegów chirurgicznych na kolanach. Obecnie stosuje się metodę chirurgiczną, w czasie której lekarz powoduje niewielkie uszkodzenia kości pod tkanką chrzęstną, by spowodować wzrost nowej tkanki chrzęstnej. Problemem w tej technice jest fakt, że często tworzy się wówczas tkanka chrzęstna włóknista, taka jak w uszach, a nie tkanka chrzęstna szklista, potrzebna do prawidłowego funkcjonowania stawów, stwierdza Stupp. Doprowadzając do regeneracji tkanki chrzęstnej szklistej uzyskamy lepsze wyniki i rozwiążemy długoterminowy problem ograniczonej mobilności oraz bólu, wyjaśnia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zespół profesora Jakoba Hanny z Instytutu Weizmanna stworzył z komórek macierzystych kompletne modele ludzkich embrionów i prowadził ich rozwój poza macicą przez 8 dni. Embriony posiadały wszystkie struktury charakterystyczne dla naturalnie powstałych 14-dniowych embrionów, w tym łożysko, pęcherzyk żółtkowy, kosmówkę i inne tkanki potrzebne do odpowiedniego wzrostu. To znaczące osiągnięcie, gdyż to, co udawało się dotychczas uzyskać z ludzkich komórek macierzystych nie mogło być uznawane za prawdziwe modeli embrionów, gdyż nie posiadało niemal żadnych struktur niezbędnych do rozwoju embrionalnego.
Modele embrionu uzyskane przez zespół Hanny posłużą nie tylko do badań nad słabo poznanym najwcześniejszym etapem rozwoju człowieka. A to ten etap jest w wielu momentach kluczowy. W siódmym dniu po zapłodnieniu rozwijający się zarodek zagnieżdża się w macicy, a już 3-4 tygodnie później wykształcają się zawiązki wszystkich narządów. Wszystko rozgrywa się w pierwszym miesiącu, przez pozostałych osiem miesięcy płód głównie rośnie, mówi Hanna. Jednak ten pierwszy miesiąc to dla nas w dużej mierze tajemnica. Nasze embriony stworzone z komórek macierzystych pozwolą na badanie tego okresu w sposób łatwy i etyczny. Rozwój modelowego embrionu bardzo przypomina rozwój prawdziwego ludzkiego embrionu, szczególnie rozwój różnych jest struktur, dodaje uczony.
Zespół Hanny korzystał z doświadczeń zdobytych podczas prac na mysim embrionem w komórek macierzystych. W przypadku ludzkiego embrionu naukowcy również nie skorzystali ani z zapłodnionego jaja, ani z macicy. Użyli pluripotencjalnych komórek macierzystych, które mogą różnicować się w wiele – ale nie wszystkie – typów komórek. Część z wykorzystanych komórek pobrali ze skóry dorosłego człowieka, część pochodzi zaś z linii komórkowych od lat hodowanych w laboratorium.
Następnie wykorzystali opracowaną przez siebie metodę reprogramowania zmieniając je w komórki na wcześniejszym etapie życia, które mogą różnicować się w dowolny typ komórek. Ten etap odpowiada 7-dniowemu zarodkowi, takiemu, który właśnie zagnieżdża się w macicy.
Naukowcy podzielili pozyskane przez siebie komórki na trzy grupy. Ta, która miała rozwinąć się w embrion pozostała bez zmian. Pozostałe dwie grupy poddano działaniu odpowiednich środków chemicznych – bez modyfikacji genetycznych – po to, by rozwinęły się tkanki potrzebne do utrzymania embrionu przy życiu – łożysko, pęcherzyk żółtkowy i kosmówkę. Po wymieszaniu komórek w odpowiednim zoptymalizowanym środowisku, doszło do spontanicznej samoorganizacji i około 1% z nich utworzył embrion. Embrion z definicji sam się rozwija. Nie trzeba mu mówić, co ma robić. Wystarczy uwolnić zakodowany wewnątrz potencjał. Kluczowym elementem jest wymieszanie odpowiednich komórek na samym początku. Gdy się to zrobi, embrion samodzielnie zaczyna się rozwijać, mówi Hanna. Po uzyskaniu embrionu naukowcy przez 8 dni rozwijali go poza macicą, uzyskując etap rozwoju odpowiadający 14-dniowemu zarodkowi.
Gdy naukowcy porównali wewnętrzną organizację swojego modelu z ilustracjami i wynikami badań anatomicznych dostępnych w atlasach z lat 60., zauważyli olbrzymie podobieństwa. Ich model zawierał każdą znaną strukturę, znajdowała się ona w odpowiednim miejscu, miała prawidłowe rozmiary i kształt. Embrion wydzielał nawet odpowiednie hormony. Gdy naukowcy je pobrali i umieścili na komercyjnym teście ciążowym, uzyskali wynik dodatni.
Wiele wad rozwojowych pojawia się w pierwszych tygodniach życia zarodka, gdy kobieta jeszcze nie wie, że jest w ciąży. Stworzony w Izraelu model pozwoli na poszukiwanie zarówno sygnałów świadczących o prawidłowym, jak i nieprawidłowym rozwoju. Już teraz naukowcy zauważyli, że jeśli do 10 dnia po zapłodnieniu embrion nie zostanie otoczony komórkami tworzącymi łożysko, jego struktury zewnętrzne, jak pęcherzyk żółtkowy, nie rozwijają się prawidłowo.
Naukowcy poinformowali też, że na etapie odpowiadającym 7. dniu po zapłodnieniu model składał się ze 120 komórek, a jego średnica wynosiła 0,1 mm. Na etapie 14. dnia był on złożony z około 2500 komórek i mierzył 0,5 mm.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.