Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Nanopłatki tlenku grafenu (s-GO) wpływają na transmisję sygnału w synapsach pobudzeniowych. Zabieg jest odwracalny, bo znikają one bez śladu po 72 godzinach od podania. Naukowcy mają nadzieję, że w przyszłości uda się to wykorzystać np. w terapii padaczki lub do transportu leczniczych substancji.

Zespół prof. Laury Ballerini z Scuola Internazionale Superiore di Studi Avanzati (SISSA) odkrył, że w hodowlach komórek hipokampa s-GO wybiórczo hamują aktywność glutaminergiczną, nie zmieniając przy tym żywotności komórek.

Kwas L-glutaminowy jest ważnym neuroprzekaźnikiem pobudzającym. Coraz więcej dowodów wskazuje na jego rolę w chorobach neuropsychicznych.

Eksperymenty opisane na łamach Nano Letters pokazują, że s-GO bezpośrednio oddziałują na uwalnianie pęcherzyka presynaptycznego. Akademicy uważają więc, że nanopłatki tlenku grafenu zmniejszają dostępność neuroprzekaźnika.

Oprócz tego s-GO wstrzyknięto do hipokampów zwierząt. Testy patch-clamp na wycinkach mózgu, które przeprowadzono 2 doby od zabiegu, pokazały znaczący spadek w zakresie glutaminergicznej aktywności synaptycznej (porównań dokonywano do iniekcji z soli fizjologicznej).

Stwierdziliśmy w modelach in vitro, że te drobniutkie płatki wpływały na transmisję sygnału z komórki do komórki, oddziałując na specjalne strefy zwane synapsami [...]. Co ciekawe, ich działanie było wybiórcze i dotyczyło synaps pobudzeniowych. Chcieliśmy sprawdzić, czy podobnie jest w żywym organizmie [...] - opowiadają Ballerini i Rossana Rauti. Okazało się, że tak.

Wygląda na to, że po iniekcji s-GO są dobrze tolerowane przez organizm. Odpowiedź zapalna okazała się słabsza niż po podaniu roztworu soli fizjologicznej. To bardzo istotne dla ewentualnych zastosowań terapeutycznych.

Specjalistki argumentują, że kluczem do sukcesu jest rozmiar zastosowanych s-GO. Ich średnica nie powinna być większa ani mniejsza niż 100-200 nm, bo za duże płatki nie mogłyby spenetrować synapsy, zaś małe zostałyby błyskawicznie "wymiecione".


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badacze z MIT, University of Cambridge i McGill University skanowali mózgi ludzi oglądających filmy i dzięki temu stworzyli najbardziej kompletną mapę funkcjonowania kory mózgowej. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) naukowcy zidentyfikowali w naszej korze mózgowej 24 sieci połączeń, które pełnią różne funkcje, jak przetwarzanie języka, interakcje społeczne czy przetwarzanie sygnałów wizualnych.
      Wiele z tych sieci było znanych wcześniej, jednak dotychczas nie zbadano ich działania w warunkach naturalnych. Wcześniejsze badania polegały bowiem na obserwowaniu tych sieci podczas wypełniania konkretnych zadań lub podczas odpoczynku. Teraz uczeni sprawdzali ich działanie podczas oglądania filmów, byli więc w stanie sprawdzić, jak reagują na różnego rodzaju sceny. W neuronauce coraz częściej bada się mózg w naturalnym środowisku. To inne podejście, które dostarcz nam nowych informacji w porównaniu z konwencjonalnymi metodami badawczymi, mówi Robert Desimone, dyrektor McGovern Institute for Brain Research na MIT.
      Dotychczas zidentyfikowane sieci w mózgu badano podczas wykonywania takich zadań jak na przykład oglądanie fotografii twarzy czy też podczas odpoczynku, gdy badani mogli swobodnie błądzić myślami. Teraz naukowcy postanowili przyjrzeć się mózgowi w czasie bardziej naturalnych zadań: oglądania filmów.
      Wykorzystując do stymulacji mózgu tak bogate środowisko jak film, możemy bardzo efektywnie badań wiele obszarów kory mózgowej. Różne regiony będą różnie reagowały na różne elementy filmu, jeszcze inne obszary będą aktywne podczas przetwarzania informacji dźwiękowych, inne w czasie oceniania kontekstu. Aktywując mózg w ten sposób możemy odróżnić od siebie różne obszary lub różne sieci w oparciu o ich wzorce aktywacji, wyjaśnia badacz Reza Rajimehr.
      Bo badań zaangażowano 176 osób, z których każda oglądała przez godzinę klipy filmowe z różnymi scenami. W tym czasie ich mózgi były skanowane aparatem do rezonansu magnetycznego, generującym pole magnetyczne o indukcji 7 tesli. To zapewnia znacznie lepszy obraz niż najlepsze komercyjnie dostępne aparaty MRI. Następnie za pomocą algorytmów maszynowego uczenia analizowano uzyskane dane. Dzięki temu zidentyfikowali 24 różne sieci o różnych wzorcach aktywności i zadaniach.
      Różne regiony mózgu konkurują ze sobą o przetwarzanie specyficznych zadań, gdy więc mapuje się je z osobna, otrzymujemy nieco większe sieci, gdyż ich działanie nie jest ograniczone przez inne. My przeanalizowaliśmy wszystkie te sieci jednocześnie podczas pracy, co pozwoliło na bardziej precyzyjne określenie granic każdej z nich, dodaje Rajimehr.
      Badacze opisali też sieci, których wcześniej nikt nie zauważył. Jedna z nich znajduje się w korze przedczołowej i wydaje się bardzo silnie reagować na bodźce wizualne. Sieć ta była najbardziej aktywna podczas przetwarzania scen z poszczególnych klatek filmu. Trzy inne sieci zaangażowane były w „kontrolę wykonawczą” i były najbardziej aktywne w czasie przechodzenia pomiędzy różnymi klipami. Naukowcy zauważyli też, że były one powiązane z sieciami przetwarzającymi konkretne cechy filmów, takie jak twarze czy działanie. Gdy zaś taka powiązana sieć, odpowiedzialna za daną cechę, była bardzo aktywna, sieci „kontroli wykonawczej” wyciszały się i vice versa. Gdy dochodzi do silnej aktywacji sieci odpowiedzialnej za specyficzny obszar, wydaje się, że te sieci wyższego poziomu zostają wyciszone. Ale w sytuacjach niepewności czy dużej złożoności bodźca, sieci te zostają zaangażowane i obserwujemy ich wysoką aktywność, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mały brzęczący, powszechnie znienawidzony – komar. Ten najgroźniejszy z zabójców ludzi jest wszechobecny. I niezwykle zróżnicowany. Oficjalnie rozpoznawanych jest 3719 gatunków komarów, z czego ludzi atakuje około 200 gatunków. Gryzą nas gatunki z rodzajów Anopheles, Culex i Aedes. Jeszcze w 1999 roku z literatury fachowej mogliśmy dowiedzieć się, że w Polsce występuje 47 gatunków komarów. Od tej pory sytuacja uległa zmianie. Przybywają do nas gatunki inwazyjne. W 2017 roku pojawiła się informacje o zaobserwowaniu we Wrocławiu Anopheles daciae, a dane Europejskiego Centrum ds. Zapobiegania i Kontroli Chorób z lutego bieżącego roku wskazują, że na południowym wschodzie Polski pojawił się Aedes japonicus. Zapewne kwestią czasu jest ich zadomowienie się w naszym kraju i rozszerzanie zasięgu na północ.
      Musimy też spodziewać się kolejnych gatunków, które zamieszkały już u naszych południowych i zachodnich granic. A może już tutaj są, tylko o tym nie wiemy, gdyż monitoring komarów jest w Polsce prowadzony mniej intensywnie niż w Niemczech i Czechach.
      Na szczęście jednak nie jesteśmy całkowicie bezbronni. Komary nie są bowiem równie aktywne przez całą dobę. Poszukują swych ofiar głównie od zmierzchu do świtu. Jako że są bardzo małe, szybko grozi im odwodnienie. Dlatego też – całkiem jak wampiry – unikają wystawiania się na bezpośrednie działanie intensywnych promieni słonecznych. Ukrywają się przed nimi w zacienionych, wilgotnych miejscach. Wieczór i noc mają dla nich też i tę zaletę, że większość ptaków, które mogą na nie polować, nie jest już aktywna. Zatem przeczekanie w ukryciu najgorętszego okresu dnia przynosi im same korzyści.
      Aktywność komarów jest mocno powiązana z temperaturami. Gdy spadają one poniżej 10 stopni Celsjusza, zmniejszają aktywność i przygotowują się do zimowania. Wystarczy jednak, by na wiosnę temperatury wzrosły powyżej 10 stopni, a komary znowu się pojawią. Niektóre gatunki zimują w postaci dorosłej, jednak większość – w postaci jaj.
      Idealna temperatura dla nich to 18–34 stopnie, a szczyt aktywności przypada na około 26 stopni. Zatem szansa na spotkanie i utratę krwi zależy od pory dnia, temperatury i nasłonecznienia. Oraz od miejsca. Większe szanse na ugryzienia mamy tam, gdzie jest ciepło, wilgotno i panuje cień. Komary nie są też dobrymi lotnikami, zatem przeszkadza im wiatr. Wolą, gdy nie wieje w ogóle, chociaż ze słabym wiatrem sobie radzą.
      Gryzą nas samice, które potrzebują krwi, by powstawały i dojrzewały komórki jajowe. Jaja wymagają wilgoci i ciepła, więc są składane do wody lub w jej okolice. Wykluwające się z nich larwy pełnią w przyrodzie bardzo ważną rolę filtratorów wody. Później następuje przeobrażenie w poczwarkę, a następnie w dorosłego, kłującego krwiopijcę. Cały cykl trwa około 3 tygodni, ale tutaj znowu wiele zależy od warunków zewnętrznych. Im wyższa temperatura, tym szybsze dojrzewanie i krótszy cykl rozrodczy. Dorosły komar żyje kilka, kilkanaście dni. I w tym czasie zdąży nam napsuć sporo krwi.
      Po co one komu?
      Czego byśmy o nich nie sądzili, komary odgrywają niezwykle ważną rolę w środowisku naturalnym.
      Mimo tego, że nas gryzą, swędzi i roznoszą choroby – niejednokrotnie śmiertelne – są niezbędnym elementem ekosystemu. U większości gatunków samce żerują na roślinach, zapylając tysiące gatunków. Komary są bardzo ważnym źródłem pożywienia dla wielu gatunków ptaków, ich jajami i larwami żywią się liczne ryby, żółwie, płazy i inne owady, jak np. ważki. Dorosłe osobniki stanowią pożywienie dla jaszczurek, żab czy pająków.
      Całkowite zniknięcie komarów z pewnością przyniosłoby wiele negatywnych skutków dla ekosystemu. A czy my byśmy na tym zyskali? Kto wie, jaki owad zapełniłby niszę po komarach? Być może taki, że zatęsknilibyśmy za brzęczącymi, dokuczliwymi krwiopijcami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Medycyny Uniwersytetu w Pittsburghu są prawdopodobnie pierwszymi, którzy donoszą o istnieniu w ludzkim mózgu 12-godzinnego cyklu aktywności genetycznej. Co więcej, na podstawie pośmiertnych badań tkanki mózgowej stwierdzili, że niektóre elementy tego cyklu są nieobecne lub zburzone u osób cierpiących na schizofrenię.
      Niewiele wiemy o aktywności genetycznej ludzkiego mózgu w cyklach krótszych niż 24-godzinne. Od dawna zaś obserwujemy 12-godzinny cykl aktywności genetycznej u morskich, które muszą dostosować swoją aktywność do pływów, a ostatnie badania wskazują na istnienie takich cykli u wielu różnych gatunków, od nicienia C. elegans, poprzez myszy po pawiana oliwkowego.
      Wiele aspektów ludzkiego zachowania – wzorzec snu czy wydajność procesów poznawczych – oraz fizjologii – ciśnienie krwi, poziom hormonów czy temperatura ciała – również wykazują rytm 12-godzinny, stwierdzają autorzy badań. Niewiele jednak wiemy o tym rytmie, szczególnie w odniesieniu do mózgu.
      Na podstawie badań tkanki mózgowej naukowcy stwierdzili, że w mózgach osób bez zdiagnozowanych chorób układu nerwowego, w ich grzbietowo-bocznej korze przedczołowej, widoczne są dwa 12-godzinne cykle genetyczne. Zwiększona aktywność genów ma miejsce w godzinach około 9 i 21 oraz 3 i 15. W cyklu poranno-wieczornym dochodzi do zwiększonej aktywności genów związanych z funkcjonowaniem mitochondriów, a zatem z zapewnieniem mózgowi energii. Natomiast w godzinach popołudniowych i nocnych – czyli ok. 15:00 i 3:00 – zwiększała się aktywność genów powiązanych z tworzeniem połączeń między neuronami.
      O ile nam wiadomo, są to pierwsze badania wykazujące istnienie 12-godzinnych cykli w ekspresji genów w ludzkim mózgu. Rytmy te są powiązane z podstawowymi procesami komórkowymi. Jednak u osób ze schizofrenią zaobserwowaliśmy silną redukcję aktywności w tych cyklach, informują naukowcy. U cierpiących na schizofrenię cykl związany z rozwojem i podtrzymywaniem struktury neuronalnej w ogóle nie istniał, a cykl mitochondrialny nie miał swoich szczytów w godzinach porannych i wieczornych, gdy człowiek się budzi i kładzie spać, a był przesunięty.
      W tej chwili autorzy badań nie potrafią rozstrzygnąć, czy zaobserwowane zaburzenia cykli u osób ze schizofrenią są przyczyną ich choroby, czy też są spowodowane innymi czynnikami, jak np. zażywanie leków lub zaburzenia snu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez dziesięciolecia mówiliśmy ludziom, że aby zachować zdrowie, muszą być aktywni fizycznie przez co najmniej 30 minut przez 5 dni w tygodniu. Jednak jeśli nawet trzymamy się tych zaleceń, to musimy pamiętać, że 30 minut to zaledwie 2% doby. Czy to możliwe, że jedynie 2% doby jest tak istotne dla zdrowia? – pyta profesor Keith Diaz z Columbia University. Diaz i jego zespół zauważyli, że te 30 minut może być niewystarczające, gdyż zależy od tego, jak spędzamy resztę dnia.
      Podczas wcześniejszych badań zwykle sprawdzano jeden rodzaj aktywności fizycznej. Nie badano, jak działa połączenie różnych aktywności. Nie wiemy, jaka kombinacja aktywności jest najlepsza do cieszenia się długim zdrowym życiem, przyznaje Diaz.
      Dopiero ostatnio, dzięki rozpowszechnieniu się tanich urządzeń do monitorowania aktywności, możliwe stało się przeanalizowanie i zbadanie tego zagadnienia.
      Naukowcy z Columbia University i innych uczelni z kilku krajów posłużyli się danymi z 6 badań, w których udział wzięło ponad 130 000 osób z USA, Wielkiej Brytanii i Szwecji. Zbadali, w jaki sposób różna kombinacja aktywności fizycznej – od spokojnej, jak lekkie prace domowe czy spokojne spacery, poprzez bardziej wymagającą, jak szybki spacer, bieganie i inne – wpływa na prawdopodobieństwo zgonu. W analizie uwzględniono też to, ile w ciągu dnia siedzimy.
      Okazało się, że korzyści z 30-minutowej aktywności fizycznej o umiarkowanym lub dużym natężeniu są zależne od tego, jak spędzamy resztą dnia. Okazało się bowiem, że u osób, które siedzą mniej niż 7 godzin na dobę taka aktywność zmniejsza ryzyko przedwczesnej śmierci nawet o 80%. Jednak u osób siedzących 11-12 godzin na dobę, nie ma ona wpływu na ryzyko zgonu. Innymi słowy, to nie jest tak prosto, że wystarczy odhaczyć sobie codzienne ćwiczenia. Ważne jest też, by nie siedzieć zbyt długo, mówi Diaz.
      Obecnie zaleca się, by ćwiczyć 30 minut dziennie czyli 150 minut tygodniowo. Jednak wszystko to można zaprzepaścić, jeśli się zbyt długo siedzi, dodaje profesor Sebastien Chastin z Glasgow Caledonian University.
      Okazuje się też, że lekka aktywność fizyczna jest ważniejsza, niż się sądzi. Jeśli bowiem poświęcamy zaledwie kilka minut dziennie na aktywność umiarkowaną lub ciężką, to i tak możemy zmniejszyć ryzyko zgonu o 30% o ile jednak oddajemy się 6-godzinnej lekkiej aktywności fizycznej. Wystarczy dużo chodzić w ciągu dnia w ramach codziennych zajęć, mówi Diaz.
      Zespół Diaza zaleca, by na każdą godzinę siedzenia przypadały 3 minuty średniej lub wymagającej aktywności fizycznej lub 12 minut lekkiej aktywności.
      Dla ułatwienia, naukowcy opracowali różne kombinacje aktywności fizycznej, które zmniejszają ryzyko przedwczesnej śmierci o 30%:
      1. 55 minut ćwiczeń (od umiarkowanego do dużego wysiłku), 4 godziny lekkiej aktywności fizycznej, 11 godzin siedzenia;
      2. 13 minut ćwiczeń, 5,5 godziny lekkiej aktywności fizycznej, 10 godzin siedzenia;
      3. 3 minuty ćwiczeń, 6 godzin lekkiej aktywności fizycznej, 9,7 godziny siedzenia.
      To dobra wiadomość dla ludzi, którzy nie mają czasu, nie mogą lub nie chcą oddawać się ćwiczeniom fizycznym. Mogą uzyskać sporo korzyści zdrowotnych z dużej ilości lekkiej aktywności fizycznej i krótkich ćwiczeń, kończy Diaz.
      Szczegóły badań opublikowano na łamach British Journal of Sports Medicine.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Słońce wydaje się znacznie mniej aktywne niż inne podobne mu gwiazdy. Do takich zaskakujących wniosków doszedł międzynarodowy zespół astronomów, który przeanalizował dane z Teleskopu Kosmicznego Keplera. Odkrycie, dokonane przez grupę kierowaną przez Timo Reinholda z Instytutu Badań Układu Słonecznego im. Maxa Plancka, pozwoli na lepsze zrozumienie ewolucji naszej gwiazdy.
      Ludzkość od wieków obserwuje Słońce i od dawna wiemy, że znaczących zmianach liczby plam na nim występujących. Wiemy też, że im więcej plam, tym większa aktywność gwiazdy i tym silniejsze gwałtowne wydarzenia, jak wyrzuty masy. Specjaliści spodziewali się, że inne gwiazdy podobne do Słońca zachowują się w podobny sposób na tym samym etapie życia.
      Nie jesteśmy w stanie obserwować plam na innych gwiazdach, jednak przemieszczanie się plam na powierzchni gwiazd powoduje zmiany ich jasności. Dzięki temu możemy obserwować aktywność magnetyczną odległych gwiazd. Zespół Reinholda postanowił wykorzystać te dane do porównania aktywności Słońca z innymi podobnymi mu gwiazdami.
      Teleskop Kosmiczny Keplera badał i rejestrował zmiany w jasności 150 000 gwiazd. W tym samym czasie sonda Gaia obserwowała gwiazdy i określała ich pozycję oraz ruch we wszechświecie. Teraz uczeni przeanalizowali te dane i na ich podstawie zidentyfikowali 369 gwiazd o temperaturze, masie, wieku, składzie chemicznymi i prędkości obrotowej podobnych do Słońca. Okazało się, że – wbrew oczekiwaniom – większość tych gwiazd jest znacznie bardziej aktywnych od Słońca. Średnia wartość zmian ich jasności była aż 5-krotnie większa niż zmiany jasności naszej gwiazdy.
      Naukowcy proponują dwa możliwe wyjaśnienia tak wielkiej różnicy. Jedno z nich zakłada, że zmiany jasności niektórych gwiazd podobnych do Słońca są tak niewielkie, iż Kepler ich nie zauważył, co sztucznie zwiększyło średnią dla całej grupy. Drugie wyjaśnienie brzmi, że mamy tu do czynienia z prawdziwymi średnimi zmianami jasności, a to sugeruje, że w przeszłości Słońce również przechodziło okres tak dużej aktywności. To drugie przypuszczenie jest zgodne z wcześniejszymi badaniami, które wskazywały, że gwiazdy z ciągu głównego, gdy zbliżają się do połowy okresu swojego istnienia, znacznie zmniejszają swoją aktywność utrzymując wcześniejszą prędkość obrotową.
      Zespół Reinholda ma zamiar wyjaśnić te kwestie, wykorzystując w tym celu przyszłe pomiary, jakie będą dokonywane przez instrumenty TESS i PLATO.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...