
Zarejestrowano jedną z najszybszych reakcji chemicznych
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z jednych z najlepszych uczelni i instytutów badawczych z USA, Niemiec, Wielkiej Brytanii i Szwecji są pierwszymi, którzy prześledzili w czasie rzeczywistym ruch pojedynczego elektronu podczas całej reakcji chemicznej. Podczas niezwykłego eksperymentu wykorzystali ekstremalnie jasne źródło promieniowania X, Linac Coherent Light Source znajdujące się w SLAC National Accelerator Laboratory. Osiągnięcie to pozwoli lepiej zrozumieć reakcje chemiczne na najbardziej podstawowym poziomie i lepiej kontrolować wyniki takiej reakcji. Taką wiedzę można zaś wykorzystać podczas opracowywania materiałów i technologii przyszłych generacji.
Kluczową rolę w reakcjach chemicznych odgrywają elektrony walencyjne, znajdujące się na najbardziej zewnętrznej powłoce atomu. Ich obrazowanie jest jednak niezwykle trudne. Nie tylko – jak wszystkie elektrony – są niezwykle małe, ale tworzą wiązania chemiczne w czasie femtosekund, biliardowych części sekundy.
Uczeni od lat próbowali zobrazować elektron podczas tworzenia wiązań chemicznych. Dotychczas się nie udawało, gdyż niezwykle trudno jest wyizolować pojedynczy elektron z atomu, a jeszcze trudniej jest śledzić go w czasie femtosekund. Dopiero teraz wyczynu tego dokonał zespół, na którego czele stali Ian Gabalski, doktorant z Uniwersytetu Stanforda, profesor Philip Bucksbaum ze Stanford PULSE Institute oraz profesor Nanna List ze szwedzkiego Królewskiego Instytutu Technologii.
Chcąc śledzić elektrony naukowcy stworzyli pojemnik z gęstym amoniakiem w stanie gazowym i wzbudzili gaz za pomocą ultrafioletowego lasera. W tym momencie włączono LCLS i promieniowanie rentgenowskie trafiło w elektrony i na nich się rozproszyło.
W większości molekuł liczba elektronów powłok wewnętrznych znacznie przewyższa liczbę elektronów walencyjnych. Jednak w niewielkich lekkich molekułach, jak amoniak – przypomnijmy, że składa się on z atomu azotu i trzech atomów wodoru – to elektrony walencyjne mają znaczną przewagę liczbową. A to oznacza, że sygnał pochodzący z promieniowania rentgenowskiego rozproszonego na elektronach walencyjnych jest wystarczająco silny, by obserwować właśnie ten rodzaj elektronów.
Naukowcy już wcześniej wiedzieli, że wzbudzone za pomocą światła molekuły amoniaku przechodzą ze struktury, w której atomy tworzą piramidę, do takiej, w której leżą na jednej płaszczyźnie. W końcu jeden z atomów wodoru wyłamuje się z tej struktury i dochodzi do przegrupowania. Badacze byli teraz w stanie śledzić ruch elektronu związany z tą zmianą struktury.
Zwykle musimy zakładać, jak elektrony walencyjne poruszają się w czasie reakcji, jednak tutaj mogliśmy bezpośrednio zmierzyć ten ruch, mówi Nanna List, która wykonała obliczenia wyjaśniające zarejestrowane dane.
Ian Gabalski tak wyjaśnia znacznie dokonanej obserwacji: Gdy próbujesz zsyntetyzować molekułę nowego leku lub materiału, dochodzi do reakcji chemicznych, które przebiegają zarówno w sposób pożądany, jak i niepożądany. Te niepożądane reakcje skutkują pojawieniem się produktów ubocznych. Jednak gdy rozumiesz, jak to wszystko działa, możesz opracować metodę sterowania reakcją tak, by osiągać tylko oczekiwane rezultaty. To może być potężne narzędzie w całej dziedzinie chemii.
Eksperyment opisano szczegółowo na łamach Physical Review Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy zaobserwowano, w czasie rzeczywistym i skali molekularnej, jak powstaje woda. Naukowcy z Northwestern University zarejestrowali łączenie się atomów wodoru i tlenu. Obserwacji dokonano w ramach badań, w czasie których uczeni chcieli zrozumieć działanie palladu jako katalizatora reakcji prowadzącej do powstawania wody.
Uzyskanie wody za mocą palladu nie wymaga ekstremalnych warunków, zatem może być wykorzystane w praktyce do pozyskania wody tam, gdzie jest trudno dostępna. Na przykład na innych planetach. Przypomnijmy sobie Marka Watneya, granego przez Matta Damona w „Marsjaninie”. Spalał paliwo rakietowe, by uzyskać wodór, a następnie dodawał do niego tlen. Nasz proces jest bardzo podobny, ale nie potrzebujemy ognia i innych ekstremalnych warunków. Po prostu zmieszaliśmy pallad i gazy, mówi jeden z autorów badań, profesor Vinayak Dravid.
O tym, że pallad może być katalizatorem do generowania wody, wiadomo od ponad 100 lat. To znane zjawisko, ale nigdy go w pełni nie rozumieliśmy, wyjaśnia doktorant Yukun Liu, główny autor badań. Młody uczony dodaje, że do zrozumienia tego procesu konieczne było połączenie analizy struktury w skali atomowej oraz bezpośredniej wizualizacji. Wizualizowanie całego procesu było zaś niemożliwe.
Jednak w styczniu 2024 roku na łamach Science Advances profesor Dravid opisał nowatorką metodę analizowania molekuł gazu w czasie rzeczywistym. Uczony wraz z zespołem stworzyli ultracienką membranę ze szkła, która więzi molekuły gazu w reaktorach o strukturze plastra miodu. Uwięzione atomy można obserwować za pomocą transmisyjnego mikroskopu elektronowego w próżni wysokiej.
Za pomocą nowej metody uczeni zaobserwowali, jak atomy wodoru wnikają do próbki palladu, rozszerzając jej sieć atomową. Po chwili – ku zaskoczeniu uczonych – na powierzchni palladu pojawiły się krople wody. Myślę, że to najmniejsze kiedykolwiek zaobserwowane krople. Tego się nie spodziewaliśmy. Na szczęście nagraliśmy to i możemy udowodnić, że nie oszaleliśmy, cieszy się Liu.
Po potwierdzeniu, że pojawiła się woda, naukowcy zaczęli szukać sposobu na przyspieszenie reakcji. Zauważyli, że najszybciej zachodzi ona, gdy najpierw doda się wodór, później tlen. Atomy wodoru wciskają się między atomy palladu, rozszerzając próbkę. Gdy do całości zostaje dodany tlen, wodór opuszcza pallad, by połączyć się z tlenem, a próbka kurczy się do wcześniejszych rozmiarów.
Badania prowadzone były w nanoskali, ale wykorzystanie większych kawałków palladu pozwoliłoby na uzyskanie większej ilości wody. Autorzy badań wyobrażają sobie, że w przyszłości astronauci mogliby zabierać ze sobą pallad wypełniony wodorem. Gdy będą potrzebowali wody, dodadzą tlen. Pallad jest drogi, ale nasza metoda go nie zużywa. Jedyne, co jest tutaj zużywane, to gaz. A wodór to najpowszechniej występujący gaz we wszechświecie. Po reakcji pallad można wykorzystywać ponownie, mówi Liu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed dziewięciu laty profesor Chris Greening i jego koledzy z Monash University zainteresowali się Mycobacterium smegmatis. Ta niezwykła bakteria może przetrwać wiele lat bez dostępu do organicznych źródeł pożywienia. Ku zdumieniu australijskich naukowców okazało się, że M. smegmatis pobiera wodór z atmosfery i wykorzystuje go produkcji energii. Teraz naukowcom udało się wyekstrahować enzym odpowiedzialny za cały proces. Mają nadzieję, że uda się go wykorzystać do produkcji tanich wydajnych ogniw paliwowych.
Enzym hydrogenazy, zwany Huc, ma tak wysokie powinowactwo do wodoru, że utlenia wodór atmosferyczny, mówi Greening. Huc jest niezwykle wydajny. W przeciwieństwie do innych znanych enzymów i katalizatorów korzysta z wodoru poniżej poziomu atmosferycznego, który stanowi 0,00005% powietrza, którym oddychamy – dodaje uczony. Od pewnego czasu wiedzieliśmy, że bakterie mogą wykorzystywać wodór atmosferyczny jako źródło energii. Jednak do teraz nie wiedzieliśmy, jak to robią – stwierdza.
Bliższe badania ujawniły, że Huc niezwykle wydajnie zmienia minimalne ilości H2 w prąd elektryczny, jednocześnie zaś jest niewrażliwy na oddziaływanie tlenu, który jest zwykle bardzo szkodliwy dla katalizatorów. Co więcej Huc jest odporny na wysokie temperatury. Nawet w temperaturze 80 stopni Celsjusza zachowuje swoje właściwości.
Bakterie wytwarzające Huc powszechnie występują w środowisku naturalnym. Odkryliśmy mechanizm, który pozwala bakteriom „żywić się powietrzem”. To niezwykle ważny proces, gdyż w ten sposób bakterie regulują poziom wodoru w atmosferze, pomagają utrzymać żyzność i zróżnicowanie gleb oraz oceanów, dodaje Greening.
Obecnie naukowcy pracują nad skalowaniem produkcji Huc. Chcą uzyskać większe ilości enzymu, by go lepiej przebadać, zrozumieć oraz opracować metody jego wykorzystania w procesach przemysłowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Doktor inż. Marta Mazurkiewicz-Pawlicka i magister inż. Zuzanna Bojarska z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej stworzyły technologię, która pozwoli na tańszą produkcję wodoru. Wykorzystały przy tym disiarczek molibdenu uzyskiwany w reaktorach zderzeniowych oraz nanomateriały węglowe.
Wodór ma być jednym z filarów transformacji energetycznej. Unia Europejska zakłada, że do roku 2050 wodór uzyskiwany ze źródeł odnawialnych będzie zapewniał 24% energii używanej we wspólnocie.
Uczone chciały opracować tańsza metodę pozyskiwania wodoru z wody. Obecnie wykorzystuje się w tym celu proces elektrolizy, a katalizatorem jest kosztowana i coraz trudniej dostępna platyna. Zespół z Politechniki Warszawskiej postanowił w roli katalizatora wykorzystać disiarczek molibdenu i nanomateriały węglowe. Docelowo materiały te mają powstawać w reaktorach zderzeniowych, co jest nowością. "Reaktory zderzeniowe pozwalają na produkcję materiałów o powtarzalnych właściwościach w sposób ciągły i kontrolowany. Przez swoją dość prostą konstrukcję są łatwo skalowalne i z powodzeniem mogą być zastosowane w przemyśle", mówi Zuzanna Bojarska.
Reaktor zderzeniowy ma kształt litery T. Dochodzi w nim do zderzenia dwóch strumieni, panują tam dobre warunki mieszania, a trzecim kanałem odprowadzany jest produkt końcowy.
Technologia syntezy disiarczku molibdenu w reaktorze zderzeniowym została opracowana przez zespół profesora Łukasza Makowskiego. Zuzanna Bojarska pracuje nad tym zagadnieniem w ramach doktoratu. Z kolei doktor Mazurkiewicz-Pawlica bada nanomateriały węglowe. Łączymy wszystkie nasze doświadczenia i kompetencje. Cieszę się, że tworzymy interdyscyplinarny zespół i jesteśmy w stanie opracować technologię wytwarzania nowych materiałów oraz znaleźć dla nich ciekawe zastosowanie, mówi Mazurkiewicz-Pawlicka.
Opracowany na PW pomysł zakłada wprowadzenie do reaktor reagentów w postaci roztworu lub zawiesiny z nanomateriałami węglowymi, a w wyniku reakcji dojdzie do wytrącania się disiarczku molibdenu na powierzchni węgla.
jednak na tym pomyły obu uczonych się nie kończą. Nawiązano współpracę z tajwańskim Tatung University. Chcemy zwiększyć aktywność naszej hybrydy w zakresie promieniowania słonecznego poprzez dodanie nanocząstek półprzewodnikowych o właściwościach fotokatalitycznych. Zastosowanie takich materiałów pozwoli na obniżenie kosztów technologicznych ze względu na użycie energii słonecznej, mówi dr Mazurkiewicz-Pawlicka.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.