Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Więcej dwutlenku węgla obniża wartości odżywcze zbóż
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Żelazo jest niezbędne do życia. Bierze udział w fotosyntezie, oddychaniu czy syntezie DNA. Autorzy niedawnych badań stwierdzili, że mogło być tym metalem, który umożliwił powstanie złożonych form życia. Dostępność żelaza jest czynnikiem decydującym, jak bujne życie jest w oceanach. Pył z Sahary nawozi Atlantyk żelazem. Badacze z USA i Wielkiej Brytanii zauważyli właśnie, że im dalej od Afryki, tym nawożenie jest skuteczniejsze.
Żelazo trafia do ekosystemów wodnych i lądowych z różnych źródeł. Jednym z najważniejszych jest jego transport z wiatrem. Jednak nie zawsze żelazo jest w formie bioaktywnej, czyli takiej, w której może być wykorzystane przez organizmy żywe.
Autorzy omawianych tutaj badań wykazali, że właściwości żelaza, które wraz z saharyjskim pyłem jest niesione z wiatrami na zachód, zmieniają się w czasie transportu. Im większa odległość, na jaką został zaniesiony pył, tym więcej w nim bioaktywnego żelaza. To wskazuje, że procesy chemiczne zachodzące w atmosferze zmieniają żelazo z forma mniej na bardziej przystępne dla organizmów żywych.
Doktor Jeremy Owens z Florida State University i jego koledzy zbadali pod kątem dostępności żelaza cztery rdzenie pobrane z dna Atlantyku. Wybrali je ze względu na odległość od tzw. Korytarza Pyłowego Sahara-Sahel. Rozciąga się on pomiędzy Czadem a Mauretanią i jest ważnym źródłem żelaza niesionego przez wiatry na zachód. Pierwszy rdzeń pochodził z odległości 200 km od północno-zachodnich wybrzeży Mauretanii, drugi został pobrany 500 km od wybrzeży, trzeci ze środka Atlantyku, a czwarty to materiał pochodzący z odległości około 500 km na wschód od Florydy. Naukowcy zbadali górne 60–200 metrów rdzeni, gdzie zgromadzone są osady z ostatnich 120 tysięcy lat, czyli z okresu od poprzedniego interglacjału.
Analizy wykazały, że im dalej od Afryki, tym niższy odsetek żelaza w osadach. To wskazuje, że większa jego część została pobrana przez organizmy żywe w kolumnie wody i żelazo nie trafiło do osadów. Sądzimy, że pył, który dociera do Amazonii czy na Bahamy zawiera żelazo szczególnie przydatne dla organizmów żywych.[...] Nasze badania potwierdzają, że pył zawierający żelazo może mieć duży wpływ na rozwój życia na obszarach znacznie odległych od jego źródła, mówi doktor Timothy Lyons z Uniwersytetu Kalifornijskiego w Riverside.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niedobór mikroelementów to najpowszechniejszy na świecie rodzaj niedożywienia. Przyjmowanie zbyt małych ilości takich składników jak żelazo, cynk, selen, jod, witaminy i inne, niesie ze sobą poważne konsekwencje zdrowotne. Tymczasem, jak dowiadujemy się z pierwszej globalnej oceny przyjmowania mikroelementów, zdecydowana większość ludzi przyjmuje zbyt mało przynajmniej jednego z 15 zbadanych mikroelementów.
Naukowcy z Harvard T.H. Chan School of Public Health, Uniwersytetu Kalifornijskiego w Santa Barbara i Global Alliance for Improved Nutrition przeanalizowali dostępne dane pod kątem przyjmowania jednego z 15 elementów niezbędnych dla zachowania zdrowia. Pod uwagę wzięli jod, żelazo, witaminę C, cynk, magnez, witaminę E, witaminy B1, B2, B6, B12, wapń, kwas foliowy, witaminę A, selen oraz niacynę.
Na potrzeby badań naukowcy podzielili populację według płci, a każdą z płci podzielili na 16 grup wiekowych od 0 do 80 lat oraz grupę powyżej 80. roku życia. Uzyskali w ten sposób dane dla 34 grup (2 płci x 17 grup wiekowych w każdej). Generalnie rzecz ujmując, grupą o najmniejszym niedoborze składników odżywczych są dzieci w wieku 0-4 lat. Następnie odsetek osób z niedoborami zaczyna szybko rosnąć i największy problem występuje w grupach 10-14 i 15-19 lat.
Aż 68% ludzi przyjmuje za mało jodu, niedobory witaminy E występują u 67%, a wapnia u 66%. U 65% mieszkańców Ziemi mamy niedobory żelaza, u 55% występują niedobory B2, u 54% niedobory kwasu foliowego, a u 53% niedobory witaminy C. Jeśli weźmiemy pod uwagę ten sam kraj i te same grupy wiekowe, to – globalnie rzecz ujmując – kobiety częściej mają niedobory jodu, witaminy B12, żelaza i selenu, a mężczyźni magnezu, witaminy B6, cynku witaminy C, A, B1 i niacyny. W większości regionów panie mają też większe niedobory wapnia, kwasu foliowego, witaminy E oraz witaminy B2. Na największe niedobory mikroelementów cierpią mieszkańcy południa Azji, Ameryki Łacińskiej i Karaibów oraz Afryki saharyjskiej.
Z załączonych do artykułu map wynika, że w Polsce największym problemem są niedobory selenu, które są widoczne u niemal 100% populacji oraz żelaza, witaminy C, E i wapnia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hiaceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
Jeśli przyjmiemy, że planety hiaceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hiaceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hiaceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hiaceańskich. Właśnie zresztą na podstawie badań K2-18b.
Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Atmosfera Jowisza słynna jest ze swoich wielkich kolorowych wirów. Ma też jednak mniej znaną niezwykłą cechę. Jej górna część jest wyjątkowo gorąca. O setki stopni cieplejsza, niż być powinna. Teraz naukowcy poinformowali o odkryciu gigantycznej, rozciągającej się na 130 000 kilometrów fali ciepła o temperaturze przekraczającej 700 stopni.
Do Jowisza dociera ponad 25-krotnie mniej promieniowania słonecznego niż do Ziemi. Z obliczeń wynika, że górne partie jego atmosfery powinny mieć temperaturę -70 stopni Celsjusza. Tymczasem pomiary wykonywane w różnych miejscach wskazują, że w górnych partiach chmur panują temperatury powyżej 400 stopni Celsjusza.
James O'Donoghue z Japońskiej Agencji Kosmicznej (JAXA) stworzył wraz z kolegami pierwszą mapę górnych warstw atmosfery Jowisza, która pozwalała na zidentyfikowanie dominujących źródeł ciepła w atmosferze. Teraz uczeni poinformowali, że za podgrzewanie atmosfery mogą odpowiadać zorze polarne.
Zorze znamy też z Ziemi, jednak o ile na Błękitnej Planecie jest to zjawisko czasowe, do którego dochodzi podczas zwiększonej aktywności Słońca, o tyle na Jowiszu zorze istnieją bez przerwy, zmienia się tylko ich intensywność. Naukowcy z JAXA zauważyli, że potężne zorze rozgrzewają atmosferę wokół biegunów Jowisza do temperatury ponad 700 stopni Celsjusza, a później ciepło to jest roznoszone przez wiatr wokół całej planety.
Uczeni odkryli, wspomnianą na wstępie, szczególnie intensywną falę gorąca bezpośrednio pod zorzą północną i stwierdzili, że fala ta przemieszcza się w stronę równika z prędkością tysięcy kilometrów na godzinę. Pojawiła się ona prawdopodobnie w wyniku silniejszego impulsu wiatru słonecznego, który zderzył się z polem magnetycznym Jowisza i dodatkowo podgrzał atmosferę.
Zorze bez przerwy podgrzewają atmosferę Jowisza, a fale, jak ta przez nas odkryta, są dodatkowym ważnym źródłem energii, stwierdził O'Donoghoue podczas odczytu wygłoszonego w trakcie Europlanet Science Congress (EPSC) 2022 w Granadzie.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.