Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

We krwi Chińczyków wykryto 2 nowe bakterie

Rekomendowane odpowiedzi

Podczas rutynowych badań we krwi 2 pacjentów z Chin wykryto 2 nowe gatunki bakterii z rodzaju Enterobacter. Są one oporne na wiele antybiotyków. Ma to spore znaczenie, zważywszy, że opóźnienia w leczeniu bakteriemii mogą prowadzić do zagrażającej życiu sepsy.

Choć niektóre gatunki występujące w przewodzie pokarmowym nie wywołują objawów chorobowych, pewne szczepy Enterobacter są patogenami i prowadzą do zakażeń oportunistycznych u osób z upośledzoną odpornością i pacjentów wentylowanych mechanicznie. Najczęstszymi miejscami takich infekcji są układy moczowy i oddechowy.

Nowym gatunkom nadano nazwy Enterobacter huaxiensis i Enterobacter chuandaensis (pochodzą one od regionu, gdzie zostały odkryte i od Uniwersytetu Syczuańskiego, na którym pracują naukowcy).

Na łamach International Journal of Systematic and Evolutionary Microbiology opisano nowe gatunki oraz ich profile oporności. Zarówno E. huaxiensis, jak i E. chuandaensis są oporne na penicylinę i cefalosporyny.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Florida Atlantic University zajęli się noszonymi na nadgarstkach paskami o różnych teksturach, by zbadać, czy mogą się na nich znajdować potencjalnie szkodliwe/patogenne bakterie. Naukowcy podkreślają, że choć opaski (do których mocowane są np. zegarki czy krokomierze) noszone są codziennie, ludzie zapominają o ich czyszczeniu lub zwyczajnie ignorują taką potrzebę.
      W ramach studium Amerykanie testowali opaski z plastiku, gumy, tkaniny, skóry i metalu (srebra i złota). Chcieli sprawdzić, czy istnieje korelacja między rodzajem materiału a występowaniem bakterii. Naukowcy przyglądali się czystości różnych rodzajów opasek. Starali się też zidentyfikować najlepsze protokoły ich prawidłowej dezynfekcji.
      Oznaczano liczebność bakterii, typy bakterii oraz ich rozkład na powierzchni opaski. Zespół dr Nwadiuto Esiobu oceniał też skuteczność 3 roztworów odkażających: 70% etanolu, lizolu (Lysol™ Disinfectant Spray) oraz octu jabłkowego.
      Niemal na wszystkich (95%) paskach znaleziono bakterie, ale najgorzej wypadły paski plastikowe i gumowe. Natomiast metalowe, szczególnie zawierające złoto i srebro, miały na swojej powierzchni niewiele bakterii lub nie miały ich prawie wcale. Plastik i guma są prawdopodobnie lepszym siedliskiem dla bakterii, gdyż są porowate i wykazują się elektrostatycznością, co przyciąga bakterie i ułatwia kolonizację. Najlepszym wskaźnikiem pozwalającym na przewidzenie stopnia kolonizacji przez bakterię była struktura powierzchni paska oraz aktywność jego użytkownika. Nie zauważono za to różnicy pomiędzy paskami używanymi przez mężczyzn i kobiety jeśli chodzi o rodzaje bakterii i częstotliwość ich występowania.
      Znalezione na paskach mikroorganizmy to standardowo występujące na skórze rodzaje Staphylococcus i Pseudomonas oraz obecny w jelitach rodzaj Escherichia, szczególnie E. coli. Staphylococcus znaleziono na 85% pasków, Pseudomonas na 30%, a E. coli występowała na 60%. Najwięcej Staphylococcus przebywało na paskach osób, które korzystały z sal gimnastycznych.
      Liczba bakterii oraz zidentyfikowane przez nas gatunki pokazują, że należy regularnie czyścić paski urządzeń noszonych na nadgarstku. Nawet niewielka liczba patogenów z tych rodzin może powodować poważne choroby. O czyszczenie pasków powinni dbać szczególnie pracownicy służby zdrowia, gdyż zidentyfikowane przez nas mikroorganizmy są bardzo niebezpieczne dla osób o osłabionym układzie odpornościowym, a ludzi ci z takimi właśnie osobami się stykają, zauważa doktor Nwadiuto Esiobu.
      Spośród trzech testowanych środków odkażających największą skutecznością wykazały się lizol i 70-procentowy etanol. Niezależnie od materiału paska po 30-sekundowej ekspozycji zabijały 99,9% bakterii. Ocet jabłkowy potrzebował 2 minut, by liczba bakterii zaczęła spadać.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dziewięciu laty profesor Chris Greening i jego koledzy z Monash University zainteresowali się Mycobacterium smegmatis. Ta niezwykła bakteria może przetrwać wiele lat bez dostępu do organicznych źródeł pożywienia. Ku zdumieniu australijskich naukowców okazało się, że M. smegmatis pobiera wodór z atmosfery i wykorzystuje go produkcji energii. Teraz naukowcom udało się wyekstrahować enzym odpowiedzialny za cały proces. Mają nadzieję, że uda się go wykorzystać do produkcji tanich wydajnych ogniw paliwowych.
      Enzym hydrogenazy, zwany Huc, ma tak wysokie powinowactwo do wodoru, że utlenia wodór atmosferyczny, mówi Greening. Huc jest niezwykle wydajny. W przeciwieństwie do innych znanych enzymów i katalizatorów korzysta z wodoru poniżej poziomu atmosferycznego, który stanowi 0,00005% powietrza, którym oddychamy – dodaje uczony. Od pewnego czasu wiedzieliśmy, że bakterie mogą wykorzystywać wodór atmosferyczny jako źródło energii. Jednak do teraz nie wiedzieliśmy, jak to robią – stwierdza.
      Bliższe badania ujawniły, że Huc niezwykle wydajnie zmienia minimalne ilości H2 w prąd elektryczny, jednocześnie zaś jest niewrażliwy na oddziaływanie tlenu, który jest zwykle bardzo szkodliwy dla katalizatorów. Co więcej Huc jest odporny na wysokie temperatury. Nawet w temperaturze 80 stopni Celsjusza zachowuje swoje właściwości.
      Bakterie wytwarzające Huc powszechnie występują w środowisku naturalnym. Odkryliśmy mechanizm, który pozwala bakteriom „żywić się powietrzem”. To niezwykle ważny proces, gdyż w ten sposób bakterie regulują poziom wodoru w atmosferze, pomagają utrzymać żyzność i zróżnicowanie gleb oraz oceanów, dodaje Greening.
      Obecnie naukowcy pracują nad skalowaniem produkcji Huc. Chcą uzyskać większe ilości enzymu, by go lepiej przebadać, zrozumieć oraz opracować metody jego wykorzystania w procesach przemysłowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krew jest płynną tkanką, jak dotąd niezastąpioną w naszym organizmie. Pomimo rozwoju i ogromnego postępu w medycynie, biotechnologii czy inżynierii genetycznej nie można jej wyprodukować, co sprawia, że jest bezcennym darem. Trudności z produkcją „sztucznej krwi” wynikają z całego szeregu różnych funkcji, jakie pełni. Główną rolą krwi jest dostarczanie substancji odżywczych i tlenu do komórek ciała oraz odbieranie zbędnych i szkodliwych produktów przemiany materii i dwutlenku węgla. Ponadto krew transportuje hormony, przeciwciała. Bierze udział w procesach krzepnięcia i termoregulacji. Utrzymuje stałość składu środowiska wewnętrznego oraz zapewnia łączność między narządami.
      Przetaczanie krwi należy do powszechnie uznanych metod leczenia, ale tylko w wypadku wyraźnych wskazań. Z przetoczeniem krwi, pomimo rozwoju nauki, wciąż wiążą się duże zagrożenia. Każda transfuzja może wywołać odpowiedź immunologiczną organizmu, wystąpienie różnego rodzaju niepożądanych reakcji poprzetoczeniowych lub przeniesienie chorób zakaźnych. Pomimo tak licznych przeciwwskazań jest bardzo często stosowana w lecznictwie jako jedyny możliwy ratujący życie składnik.
      Czy wiesz, że w Polsce przeprowadza się 2 do 3 milionów transfuzji rocznie?!
      Wraz z rozwojem medycyny i lepszym dostępem do nowoczesnych metod leczenia wzrasta zapotrzebowanie na krew, szczególnie w takich dziedzinach, jak: transplantologia, hematologia i onkologia. Ponadto duży odsetek osób potrzebujących przetoczenia krwi to ofiary wypadków, chorzy z urazami, pacjenci operowani na oddziałach chirurgicznych, kardiologicznych, położniczych i ginekologicznych. Sytuacja demograficzna w Polsce oraz starzenie się społeczeństwa także mają duże znaczenie. Aby zrozumieć skalę problemu braku krwi w szpitalach, warto wiedzieć, że od jednego dawcy uzyskujemy tzw. jedną „jednostkę” KKP, a z niej jedną „jednostkę” KKCz. U pacjentów zdarzają się masywne krwotoki, wówczas konieczne jest przetoczenie około dziesięciu „jednostek” KKCz w ciągu doby. To oznacza, że dla jednego pacjenta potrzeba krwi od co najmniej 10 dawców. Ponadto zabiegi na otwartym sercu, a także przeszczepy wymagają zastosowania podczas jednej operacji nawet trzydziestu „jednostek” KKCz.
      Krew można oddać w różny sposób
      Metoda aferezy to jeden ze sposobów oddania krwi. Dzięki niej można oddać konkretny składnik, np. osocze, płytki, a pozostałe elementy krwi ponownie zwracane są do organizmu. Proces aferezy odbywa się z udziałem urządzeń zwanych separatorami.
      Zabieg aferezy
      Erytrafereza
      Koncentrat 
      Krwinek Czerwonych
      KKCz
      czas oddawania: około 2 godzin
      częstotliwość oddawania:
      co 6 miesięcy
      Tromboafereza
      Koncentrat Krwinek Płytkowych
      KKP
      czas oddawania:
      do 2 godzin
      częstotliwość oddawania:
      nie częściej niż
      co 4 tygodnie
      Plazmafereza
      Osocze 
      Świeżo 
      Mrożone
      FFP
      czas oddawania:
      około 30-40 min
      częstotliwość oddawania:
      nie częściej niż
      co 2 tygodnie
      Leukafereza
      Koncentrat Granulocytarny
      KG
      czas oddawania: około 2 godzin
      częstotliwość oddawania:
      nie częściej niż
      co 4 tygodnie
      Czy wiesz, że jedna oddana donacja może uratować życie trzech osób?
      Najczęstszym sposobem oddania krwi jest metoda oddania krwi pełnej. Czas trwania takiego zabiegu to tylko od 5 do 10 min. Częstotliwość oddawania uzależniona jest od płci: mężczyźni mogą oddać krew nie częściej niż 6 razy w roku, kobiety natomiast nie częściej niż 4 razy w roku. Krew pełna pobrana od dawców to materiał wyjściowy podlegający rozdzieleniu i preparatyce na różne składniki, dzięki temu donacja od jednego dawcy może zapewnić składniki dla leczenia kilku chorych.
      Krew pełną pobiera się od dawcy do jednorazowego, sterylnego pojemnika z tworzywa sztucznego, który zawiera środek zapobiegający jej krzepnięciu. Następnie pojemnik z krwią poddaje się wirowaniu. Krwinki czerwone opadają na dno, a osocze koloru słomkowego przemieszcza się w górę. Na środku zwirowanego pojemnika z krwią pełną powstaje tzw. kożuszek leukocytarno–płytkowy.
      Krew z takiej donacji rozdziela się na:
      1. KKCz – koncentrat krwinek czerwonych;
      2. KKP – koncentrat krwinek płytkowych;
      3. FFP – osocze świeżo mrożone → 4. CPAG – krioprecypitat.
      Koncentrat krwinek czerwonych (KKCz) to najczęściej stosowany składnik w leczeniu krwią. Przetaczany jest z powodu niedokrwistości, które wynikają z niewydolności nerek, chorób przewlekłych, krwotoków z przewodu pokarmowego lub utraty krwi w wyniku urazów czy zabiegów chirurgicznych. Data ważności KKCz wynosi 42 dni (6 tygodni).
      Koncentrat krwinek płytkowych (KKP) powstaje z krwi pełnej ze zlania kożuszków leukocytarno-płytkowych lub pobierany jest metodą aferezy. Zlewany KKP składa się aż z 4–5 jednostek pochodzących od dawców o takiej samej grupie krwi, czyli do sporządzenia jednego opakowania zlewanego KKP potrzeba składników od 4–5 dawców tej samej grupy. Płytki krwi przetacza się chorym z małopłytkowością, najczęściej pacjentom onkologicznym, pacjentom przygotowywanym do i po przeszczepach, poddawanym operacjom kardiochirurgicznym. Pacjenci, którzy potrzebują płytek krwi, najczęściej wymagają wielokrotnego przetaczania, dlatego tak ważne jest, aby ich nie zabrakło. Termin przydatności KKP to zaledwie 5 dni.
      Osocze świeżo mrożone (FFP) jest to składnik otrzymywanym z jednej „jednostki” krwi pełnej po oddzieleniu składników komórkowych lub także metodą aferezy. Zawiera wszystkie czynniki krzepnięcia oraz inne białka, takie jak albuminy czy immunoglobuliny. FFP stosuje się w leczeniu różnego rodzaju zaburzeń układu krzepnięcia oraz u chorych, którzy doznali poważnych urazów i wymagają masywnych przetoczeń. W czasie pandemii COVID-19 osocze od ozdrowieńców - osób, których krew zawierała przeciwciała przeciwko wirusowi SARS-CoV-2 – wspomagało leczenie chorych z ciężkimi, zagrażającymi życiu objawami zakażenia. Okres przydatności FFP wynosi 36 miesięcy.
      Krioprecypitat (CPAG) to frakcja krioglobulin uzyskana kontrolowanymi metodami rozmrażania FFP. Wskazaniami do stosowania krioprecypitatu są rozsiane wykrzepianie wewnątrznaczyniowe (DIC), zmiany jakościowe i ilościowe fibrynogenu, niedobory czynnika VIII.
      Koncentrat granulocytarny (KG) zawiera zawieszone w osoczu granulocyty. KG uzyskiwany jest metodą aferezy od dawcy stymulowanego wcześniej lekami zwiększającymi wytwarzanie granulocytów. Skuteczność tej metody leczenia jest przedmiotem ciągłych dyskusji. KG przetaczany jest jednak chorym, u których nieskuteczne jest leczenie antybiotykami, z ciężką neutropenią i stwierdzoną posocznicą. Stosowany jest w leczeniu zagrażających życiu zakażeń bakteryjnych lub grzybiczych, w hipoplazji szpiku, u chorych z udokumentowaną dysfunkcją granulocytów.
      Czy wiesz, że jedna donacja krwi możne uratować życie czworga dzieci?
      Dzieje się tak dlatego, że jedna „jednostka” KKCz (220 ml) uzyskana z krwi pełnej od jednego dawcy dzieli się zazwyczaj na 4 porcje pediatryczne. Podobnie FFP najczęściej dzielone jest na 4 mniejsze porcje pediatryczne. Krew pomaga nie tylko osobom dorosłym i dzieciom. Może być stosowana również do transfuzji dopłodowej, w przypadku głębokiej niedokrwistości płodu. W razie konieczności jest przetaczana wcześniakom, noworodkom i niemowlętom, jako transfuzja wymienna lub jako transfuzje uzupełniające.
      Pamiętaj, że każda grupa krwi jest cenna
      Jeśli masz grupę krwi O RhD-(ujemny), możesz być uniwersalnym dawcą KKCz dla biorców wszystkich grup krwi, ale jeśli masz grupę krwi AB, możesz być uniwersalnym dawcą osocza dla wszystkich. W przypadku bezpośredniego zagrożenia życia, kiedy grupa krwi z układu ABO i RhD pacjenta jest nieznana lub pacjent nie ma wiarygodnego wyniku, do przetoczenia wydaje się:
      1. KKCz grupy O RhD-(ujemny);
      2. Osocze grupy AB;
      3. KKP grupy O zawieszony w osoczu AB lub odpowiednim roztworze wzbogacającym.
      Pamiętaj jednak, że każda grupa krwi jest cenna. Szczególnie teraz, kiedy zbliża się lato. W wakacje brakuje krwi wszystkich grup, niemal w każdym centrum krwiodawstwa. Wielu stałych dawców wyjeżdża, z drugiej strony jest więcej wypadków. Latem często krew wydawana jest tylko w sytuacjach zagrożenia życia, a planowe operacje muszą zostać wstrzymywane ze względu na brak krwi. Nie jest możliwe zrobienie rezerwy na cały okres wakacyjny, ponieważ KKCz można przechowywać maksymalnie 42 dni, a KKP zaledwie 5 dni.  
      Przywilej Honorowego Dawcy Krwi
      Każdemu krwiodawcy, który zarejestruje się w jednostce organizacyjnej publicznej służby krwi i odda dobrowolnie i honorowo krew, przysługują różne przywileje, m.in. posiłek regeneracyjny o wartości kalorycznej 4500 kcal w postaci tabliczek czekolady, bezpłatne wyniki badań diagnostycznych, ulga podatkowa, zwrot kosztów podróży do RCKiK lub terenowego oddziału, a także dzień wolny od nauki lub pracy. W przypadku stanu zagrożenia epidemicznego albo stanu epidemii są to nawet dwa dni. Nie ma jednak większego przywileju niż satysfakcja z uratowania czyjegoś zdrowia i życia.
       
      Bibliografia:
      1. Raś J., Koterwa M., Mazurek B., Szeląg M. Ulotki informacyjne o preparatach. RCKiK Kraków 2020
      2. Bochenek-Jantczak D., Szczudło K. Organizacja i zasady funkcjonowania szpitalnego banku krwi. alfa-medica press, RCKiK Katowice 2022
      3. Korsak J., Fabijańska-Mitek J., Jędrzejczak W.W., Nowacka E., Radziwon P., Rzepecki P. Wytyczne w zakresie leczenia krwią i jej składnikami oraz produktami krwiopochodnymi w podmiotach leczniczych. PZWL Wydawnictwo Lekarskie, Warszawa 2020
      4. Krwiodawstwo. Zbiór przepisów dla placówek służby krwi, pod red. J. Sablińskiego i M. Łętowskiej, wydanie II, Warszawa 2000
      5. Mintz P.D. (red.) Leczenie krwią. Zasady postępowania klinicznego. Sekcja Transfuzjologiczna Polskiego Towarzystwa Hematologów i Transfuzjologów, Warszawa 2001  
      6. Korsak J., Łętowska M. Transfuzjologia kliniczna, alfa-medica press 2009
      7. Niechwiadowicz-Czapka T., Klimczyk A. Leczenie krwią. PZWL Warszawa 2011

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekotoksykolog Heahter Leslie i chemik Maria Lamoree z Vrije Universiteit Amsterdam wraz z zespołem jako pierwsi wykazali, że plastik, którym zanieczyściliśmy środowisko naturalne, trafił już do ludzkiej krwi. Wyniki ich badań, prowadzonych w ramach projektu Immunoplast, zostały opublikowane na łamach pisma Environment International.
      Grupa naukowców z Amsterdamu opracowała metodę pozwalającą na odnalezienie plastiku we krwi człowieka. Do badań zaangażowano 22 anonimowych dawców, a ich krew sprawdzono pod kątem obecności pięciu różnych polimerów, wchodzących w skład tworzyw sztucznych.
      Polimery znaleziono u 3/4 badanych. Tym samym po raz pierwszy udowodniono, że obecny w środowisku mikroplastik przenika na naszej krwi. Wcześniej wiedzieliśmy tylko, że istnieje taka możliwość, gdyż wskazywały na nią eksperymenty laboratoryjne. Tym razem mamy dowód, że nasz organizm absorbuje plastik podczas codziennego życia, a tworzywa sztuczne trafiają do krwi.
      Średnia koncentracja plastiku we krwi wszystkich 22 badanych wynosiła 1,6 mikrograma na mililitr. To mniej więcej łyżeczka plastiku na 1000 litrów wody.
      Najczęściej występującym we krwi rodzajem plastiku były poli(tereftalan etylenu) – czyli PET, z którego wytwarza się plastikowe butelki na wodę i napoje – polietylen, popularne tworzywo do produkcji m.in. plastikowych woreczków, tzw. zrywek rozpowszechnionych w handlu spożywczym oraz polistyren, z którego powstaje styropian, szczoteczki do zębów czy zabawki. We krwi badanych znaleziono też poli(metakrylan metylu), PMMA, główny składnik szkła akrylowego. Naukowcy odkryli też polipropylen, jednak jego koncentracja we krwi była zbyt mała, by dokonać precyzyjnych pomiarów.
      Dzięki badaniom Leslie i Lamoree uczeni będą mogli pójść dalej. Teraz kolejne zespoły naukowe będą mogły poszukać odpowiedzi na pytania o to, jak bardzo nasze ciała są zanieczyszczone plastikiem, na ile łatwo mikroplastik może przenikać z krwi do różnych tkanek ludzkiego organizmu oraz czy niesie to ze sobą zagrożenie dla zdrowia, a jeśli tak, to jakie są to zagrożenia.
      Obecne prace badawcze zostały sfinansowane przez niedochodową organizację Common Seas oraz założone przez holenderskie Ministerstwo Zdrowia i Holenderską Organizację Badań Naukowych konsorcjum ZonMw zajmujące się badaniem kwestii zdrowia publicznego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Włoscy specjaliści posłużyli się starannie wyselekcjonowanymi bakteriami, by dokończyć oczyszczanie rzeźb Michała Anioła z zespołu grobowego Medyceuszów (Nowej Zakrystii) we Florencji. Wykorzystano szczepy Serratia ficaria SH7, Pseudomonas stutzeri CONC11 i Rhodococcus sp. ZCONT. Wyniki projektu mają zostać zaprezentowane jeszcze w tym miesiącu.
      Jak podkreślił Jason Horowitz w reportażu opublikowanym na łamach The New York Timesa, prace w Kaplicy trwały niemal 10 lat. Na koniec pozostały najbardziej uporczywe przebarwienia i osady.
      Bakterie zdały egzamin śpiewająco
      W listopadzie 2019 r. Muzeum Zespołu Grobowego Medyceuszów (Museo delle Cappelle Medicee) poprosiło Narodowy Komitet Badań o przeprowadzenie analiz z wykorzystaniem spektroskopii w podczerwieni. Wykryto ślady kalcytu, krzemianów i substancji organicznych. Dzięki temu Anna Rosa Sprocati z Włoskiej Narodowej Agencji Nowych Technologii zyskała cenne wskazówki co do wyboru najwłaściwszych bakterii z zestawu niemal 1000 szczepów (zwykle są one stosowane do rozkładania plam ropy albo zmniejszania toksyczności metali ciężkich).
      Ostatecznie zespół konserwatorów przetestował za ołtarzem, na niewielkiej palecie złożonej z 20 prostokątów, 8 najbardziej obiecujących szczepów. Wybrano bakterie bezpieczne dla ludzi, środowiska i, oczywiście, dzieł sztuki.
      Jak wyjaśniła Sprocati, później bakterie zastosowano na nagrobku Juliana Medyceusza (księcia Nemours żyjącego w latach 1479-1516) z alegorycznymi figurami Dnia i Nocy. Włosy Nocy przemyto P. stutzeri CONC11, bakterią wyizolowaną z odpadów garbarni w okolicach Neapolu. Bakteriami Rhodococcus sp. ZCONT, tym razem pochodzącymi z gleby zanieczyszczonej dieslem w Casercie, usunięto resztki gipsowych odlewów, kleju i tłuszczu z jej uszu.
      Działania te okazały się sukcesem, jednak Paola D'Agostino wolała nie igrać z losem przy czyszczeniu twarzy Nocy. Podobne podejście prezentował watykański ekspert Pietro Zander, który dołączył do zespołu. Dla bezpieczeństwa postanowiono zastosować mikrokapsułki z gumą ksantanową. Analogicznym zabiegom poddano głowę rzeźby Juliana.
      W marcu ubiegłego roku przez pandemię muzeum zamknięto. Sprocati zabrała więc "swoje" bakterie w inne miejsce. W sierpniu jej zespół wykorzystał baterie z okolic Neapolu do usunięcia wosku pozostawionego przez stulecia palenia świec wotywnych na marmurowym reliefie Alessandra Algardiego Spotkanie Attyli i papieża Leona I w Bazylice św. Piotra.
      Gdy Kaplicę otwarto w pewnym zakresie w połowie października 2020 r., ponownie wdrożono prace.  Wtedy specjaliści rozprowadzili żel z S. ficaria SH7 na nagrobku Wawrzyńca II Medyceusza (1492-1519).
      Za stan obiektu odpowiadają różne czynniki środowiskowe, ale dużą rolę odegrał w tym sposób, w jaki potraktowano ciało zamordowanego w 1537 r. księcia Florencji Aleksandra Medyceusza. Jego ciało zawinięto w dywan i umieszczono w sarkofagu Wawrzyńca. Substancje z jego rozkładającego się ciała wsiąkały w marmur, niszcząc dzieło Michała Anioła. Na szczęście przebarwieniami i deformacjami z powodzeniem zajęły się S. ficaria SH7, które wyizolowano z gleby skażonej metalami ciężkimi (ze stanowiska na Sardynii).
      Zaczęło się od konferencji...
      W 2013 r. Monica Bietti, była już dyrektorka Muzeum Zespołu Grobowego Medyceuszów, zauważyła, co się stało z zabytkami od konserwacji w 1988 r. Trzeba było ponownie się nimi zająć. Im jednak kaplica stawała się czystsza, tym bardziej zniszczony sarkofag Wawrzyńca od niej odstawał. W 2016 r. Marina Vincenti uczestniczyła w konferencji zorganizowanej przez Sprocati i innych biologów z jej zespołu (An introduction to the world of microorganisms). Specjaliści zademonstrowali, jak bakterie usunęły resztki żywicy z barokowych fresków w Galerii Carracciego w Pałacu Farnese w Rzymie. Bakterie wyizolowane z wód kopalnianych z Sardynii usunęły rdzawe zacieki z marmurów galerii. Kiedy przyszła kolej na oczyszczanie dzieł Michała Anioła, postanowiono więc skorzystać z pomocy bakteryjnych sprzymierzeńców. D'Agostino zgodziła się pod warunkiem, że wcześniej zostaną przeprowadzone testy. Bakterie zdały egzamin i wykonały swoją pracę...
      W przeszłości sięgano już po pomoc bakterii w oczyszczaniu dzieł sztuki. Jak napisała w artykule opublikowanym w Verge Mary Beth Griggs, zbliżone techniki zastosowano w Katedrze Narodzin św. Marii w Mediolanie, Katedrze Wniebowzięcia Najświętszej Maryi Panny w Pizie czy w Campo Santo di Pisa. W 2011 r. specjaliści z Walencji wykorzystali bakterie, by oczyścić XVII-wieczne freski Antonia Palomino w Sant Joan del Mercat.
      Zespół grobowy Medyceuszów przy kościele San Lorenzo
      Zespół grobowy Medyceuszów przy kościele San Lorenzo tworzą: Cappelle dei Principi z kryptą (Matteo Nigetti 1604 — mauzoleum Cosima I i jego przodków) i Nowa Zakrystia (Sagrestia Nuova), dzieło Michała Anioła (1520–35), ukończone przez Georgia Vasariego (1557). Mieszczą się w niej nagrobki Wawrzyńca II Medyceusza (ks. Urbino) z rzeźbami Świtu i Zmierzchu, Juliana Medyceusza (ks. Nemours) z rzeźbami Dnia i Nocy, a także podwójny sarkofag zawierający prochy Wawrzyńca Medyceusza (Wawrzyńca Wspaniałego) i jego młodszego brata Juliana, z ustawionymi na nim figurami Madonny z Dzieciątkiem (dłuta Michała Anioła, 1521), św. Kosmy (dzieło Montorsolego) i św. Damiana (dzieło Raffaela da Montelupy).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...