Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Plazma kwarkowo-gluonowa może być zapalnikiem wybuchu supernowych
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z eksperymentu ATLAS w CERN-ie zaobserwowali kwarki t (kwarki wysokie, prawdziwe), powstałe w wyniku zderzeń jonów ołowiu. Tym samym cząstki te zostały po raz pierwszy zarejestrowane w wyniku interakcji jąder atomów. To ważny krok w dziedzinie fizyki zderzeń ciężkich jonów. Dzięki temu możliwe będą dodatkowe pomiary dróg tworzenia się plazmy kwarkowo-gluonowej i badania natury oddziaływań silnych. Te najpotężniejsze z oddziaływań podstawowych – przypomnijmy, że należą do nich oddziaływania silne, słabe, grawitacyjne i elektromagnetyczne – wiążą kwarki w protony i neutrony.
W plazmie kwarkowo-gluonowej (QGP) kwarki i gluony tworzą egzotyczny stan materii, przypominający niezwykle gęstą ciecz. Naukowcy uważają, że plazma taka wypełniała wszechświat po Wielkim Wybuchu, więc jej badanie zdradzi nam szczegóły na temat samych początków. Jednak QGP powstająca w wyniku zderzeń ciężkich jonów istnieje niezwykle krótko, przez około 10-23 sekundy. Jej bezpośrednia obserwacja jest niemożliwa, dlatego naukowcy badają cząstki powstające w wyniku zderzeń i przechodzące przez QGP, w ten sposób mogą badać właściwości samej plazmy.
Kwarki t są szczególnie obiecującymi próbnikami ewolucji plazmy w czasie. Te najcięższe z cząstek elementarnych rozpadają się na inne cząstki w czasie o cały rząd wielkości krótszym niż czas potrzebny do utworzenia się plazmy. Czas, jaki upłynął między zderzeniem a interakcją produktów rozpadu kwarków t z plazmą kwarkowo-gluonową może zaś służyć do pomiaru zmian plazmy w czasie.
Fizycy z ATLAS badali zderzenia jonów ołowiu odbywając się przy energii 5,02 TeV. Zaobserwowali pojawianie się kwarków t oraz ich rozpad na kwarki b (kwarki niskie, piękne) oraz bozony W, które następnie rozpadały się na elektron lub mion i neutrino. Poziom ufności obserwacji określono na 5 sigma, a to oznacza, że możemy mówić o odkryciu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół astronomów korzystając z kosmicznego teleskopu eROSITA znajdującego się na pokładzie misji Spektr-RG odkrył powtarzające się co kilka/kilkanaście godzin wybuchy w zakresach promieniowania rentgenowskiego pochodzące z obszarów centralnych w dwóch galaktykach. Wcześniej nie wykazywały one jakiejkolwiek aktywności. Praca właśnie ukazała się w prestiżowym periodyku Nature. Głównym autorem pracy jest Riccardo Acordia - doktorant z Max Planck Institute for Extraterrestrial Physics (MPE). Członkiem zespołu badawczego był również dr Mariusz Gromadzki.
W centrum prawie każdej galaktyki znajduje się supermasywna czarna dziura. W przypadku galaktyk podobnych do naszej Drogi Mlecznej, masy supermasywnych czarnych dziur zawierają się w przedziale od kilkuset tysięcy do kilku milionów mas Słońca. Dla porównania masa czarnej dziury w Drodze Mlecznej to pięć milionów mas Słońca. Supermasywne czarne dziury nie emitują żadnego światła, a o ich obecności astronomowie wnioskują na podstawie zachowania gwiazd i materii w ich najbliższym sąsiedztwie.
Są też galaktyki ze znacznie masywniejszymi czarnymi dziurami (ich masy mogą sięgać nawet setek milionów mas Słońca). Otoczone są one dyskami materii, która w ogromnych ilościach jest przez nie pochłaniana. Wewnętrzne obszary takich dysków są rozgrzane do ogromnej temperatury i emitują olbrzymie ilości promieniowania, często kilkakrotnie większego niż wszystkie gwiazdy w danej galaktyce. Obiekty takie nazywamy kwazarami i oznaczamy je skrótem AGN (ang. active galactic nuclei), czyli aktywne jądra galaktyk. Są to najjaśniejsze obiekty we Wszechświecie.
Podczas rutynowego skanowania nieba eROSITA znalazła nietypowe obiekty zlokalizowane w centrach dwóch galaktyk, które niemal w regularnych odstępach czasu, co kilka/kilkanaście godzin, wysyłały ostre impulsy w promieniowaniu rentgenowskim. Emitowana podczas nich energia jest porównywalna z całkowitą energią wypromieniowywaną przez ich macierzyste galaktyki. Było to odkrycie o tyle zaskakujące, że wcześniej podobne zjawisko zostało odkryte w przypadku dwóch kwazarów, a ich natura tłumaczona był procesami fizycznymi występującymi w wewnętrznych obszarach dysków akrecyjnych. Nowo odkryte zjawiska zostały potwierdzone przy użyciu dwóch innych rentgenowskich teleskopów XMM-Newton oraz NICER.
W tym przypadku galaktyki, z których dochodzą impulsy są spokojne i nie pokazywały wcześniej żadnej zmienności związanej z pochłanianiem materii przez supermasywne czarne dziury. Są to zupełnie normalne galaktyki podobne do naszej Drogi Mlecznej. Przyczyną tych zjawisk nie jest do końca zrozumiała. Z pewnością w tym przypadku można odrzucić wyjaśnienie wymagające obecności dysku akrecyjnego. Najbardziej prawdopodobną przyczyną tej pseudo-okresowej zmienności jest obecność w pobliżu supermasywnej czarnej dziury gwiazdy, której orbita jest znacząco wydłużona. W momencie gdy gwiazda znajduje się najbliżej czarnej dziury, część jej atmosfery jest odrywana przez ogromną grawitację, a następnie pochłaniana. Dalsze obserwacje oraz badania teoretyczne tych obiektów pozwolą potwierdzić bądź odrzucić proponowany scenariusz oraz zrozumieć mechanizmy aktywowania czarnych dziur w typowych galaktykach.
W opublikowanych badaniach brał udział doktor Mariusz Gromadzki z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego. Zajmował się on opracowaniem widm optycznych tych obiektów uzyskanych przy pomocy 10 metrowego teleskopu SALT zlokalizowanego w Republice Południowej Afryki. Widma te pozwoliły na wyznaczenie odległości do tych galaktyk oraz oszacowanie energii emitowanej podczas tych zjawisk.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W maju 1110 roku mieszkańcy Europy obserwowali niezwykle ciemne całkowite zaćmienie Księżyca. Dzięki zrewidowaniu w ostatnim czasie chronologii osadów z grenlandzkich rdzeni lodowych możliwe było połączenie doniesień z Europy z wybuchem wulkanu w Japonii.
W rdzeniu lodowym pobranym na Grenlandii widoczne są ślady największego w ostatnim tysiącleciu osadzania się związków siarki. Dotychczas łączono je z erupcją Hekli z 1104 roku. Jednak dzięki nowej chronologii wiemy, że wspomniane osady powstały w latach 1108–1113. Dlatego też naukowcy z Uniwersytetu w Genewie, Université Clermont Auvergne, Trinity College i Uniwersytetu Oksfordzkiego uważają, że warstwa osadów pochodzi z erupcji japońskiego wulkanu Mt. Asama. O wynikach swoich badań poinformowali na łamach Nature.
Doszło do niej w sierpniu 1108 roku i był to największy wybuch tego wulkanu w holocenie. Nie można przy tym wykluczyć, że miała wtedy miejsce cała seria erupcji różnych wulkanów. Zarówno badania dendroklimatologiczne jak i dane historyczne wskazują, że w tym czasie zaszły poważne krótkotrwałe zmiany klimatyczne. Niewykluczone, że spowodowały one kryzys w produkcji żywności, jakiego Europa Zachodnia doświadczyła w latach 1109–1111.
Na potrzeby obecnej pracy naukowcy wykorzystali nie tylko dane z rdzenia lodowego. Użyli również Five Millennia Catalog of Lunar Eclipses. To stworzony przez NASA katalog z obliczeniami dat zaćmień Księżyca na przestrzeni ostatnich 5000 lat. Wynika z niego, że w latach 1110–1120 w Europie można było obserwować siedem całkowitych zaćmień księżyca.
Uczeni przeanlizowali zapiski historyczne z tamtych lat i wyodrębnili 17 najbardziej szczegółowych i wiarygodnych. Z nich 6 było na tyle dokładnych, że pozwala określić jasność Srebrnego Globu w skali Danjon.
Okazało się, że interesujące nas zaćmienie z 5 maja 1110 roku, było wyjątkowo ciemne. Autor anglosaskiej Peterborough Chronicle pisze o jasno świecącym księżycu na czystym niebie, który stawał się coraz ciemniejszy, aż zupełnie nie było go widać i stan taki trwał niemal przez całą noc. Zaćmienie to było jednym z najciemniejszych zaćmień w latach 500–1800. Było tak ciemne, że może rywalizować z zaćmieniami związanymi z wybuchami wulkanów Samalas (1257) i Krakatau (1883). Autorzy pracy zauważają, że wszystkie bardzo ciemne zaćmienia Księżyca od 1600 roku są związane z wybuchami wuklanów, jak np. Huaynaputina (1600), Tambora (1815), Krakatau (1883) czy Pinatubo (1991).
Hipotezę o wybuchu wulkanu wzmacniają też badania pierścieni drzew, które wskazują, że w 1109 roku doszło do jednego z największych na przestrzeni 1500 lat spadku średnich letnich temperatur. Wszystkie porównywalne spadki są zaś powiązane z erupcją wulkaniczną.
Tymczasem, jak wiemy z dziennika Chuyuki autorstwa Fujiwary no Munetady (1062–1141), pod koniec sierpnia 1108 roku rozpoczęła się erupcja wulkanu Asama, która trwała do października tego samego roku. Jako, że była to najsilniejsza erupcja tego wulkanu w holocenie i trwała od sierpnia do października 1108, naukowcy stwierdzili, że powinna ona spowodować znaczny opad związków siarki nad Grenlandią od końca 1108 do początku 1110 roku. Zgadza się to z nowym datowaniem grenlandzkich rdzeni lodowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Odkryta właśnie supernowa jest co najmniej dwukrotnie jaśniejsza i energetyczna oraz prawdopodobnie znacznie bardziej masywna niż dotychczasowa rekordzistka. Została ona zauważona przez międzynarodowy zespół naukowy, na którego czele stali naukowcy z University of Birmingham.
Grupa, w skład której wchodzą również uczeni z uniwersytetów Harvarda, Ohio i Norhtwestern, uważa, że SN2016aps może być przykładem niezwykle rzadkiej klasy pulsacyjnych supernowych z niestabilnością kreacji par. Być może powstała w wyniku połączenia dwóch gwiazd tuż przed eksplozją. Dotychczas takie wydarzenie przewidywano jedynie teoretycznie.
Możemy badać supernowe wykorzystując dwie skale – całkowitą energię ich eksplozji albo energię emitowaną w formie światła widzialnego, mówi główny autor badań doktor Matt Nicholl z University of Birmingham.
W typowej supernowej energia emitowana w postaci światła widzialnego to mniej niż 1% całkowitej emisji. Jednak w przypadku SN2016aps zaobserwowaliśmy, że energia ta była 5-krotnie większa niż dla typowej supernowej. To największa ilość światła, jakie udało się zaobserwować z supernowej, stwierdza uczony.
Analiza spektrum światła wykazała, że eksplozja została zasilona zderzeniem pomiędzy supernową a masywną powłoką gazową odrzuconą przez gwiazdę lata wcześniej. Każdej nocy obserwuje się wiele supernowych, większość z nich znajduje się w masywnych galaktykach. Ta supernowa się wyróżniała. Wydawało się, że znajduje się w środku pustki. Nie byliśmy w stanie dostrzec jej galaktyki, póki światło z supernowej nie przygasło, mówi doktor Peter Blanchard z Northwestern University.
Zespół obserwował gwiazdę przez dwa lata, do czasu aż jej jasność nie zmniejszyła się o 99%. Na podstawie tych obserwacji stwierdzono, że supernowa miała masę od 50 do 100 mas Słońca. Gwiazdy o tak wielkiej masie doświadczają gwałtownego pulsowania przed śmiercią. Zrzucają wtedy gigantyczną powłokę gazową. Zjawisko to może być napędzane przez proces zwany niestabilnością kreacji par, który został teoretycznie przewidziany 50 lat temu. Jeśli wszystko odpowiednio zgra się w czasie, supernowa może ponownie przechwycić powłokę gazową i uwolni olbrzymią ilość energii w wyniku tej kolizji. Myślimy, że zaobserwowaliśmy tutaj najlepszego kandydata na dowód prawdziwości takiego procesu. I prawdopodobnie najbardziej masywnego, stwierdza Nicholl.
Uczony dodaje, że SN2016aps dostarczyła dodatkowych pytań. Gwiazda zawierała głównie wodór. Jednak tak masywne gwiazdy powinny stracić wodór na długo, zanim zaczną pulsować. Dlatego też naukowcy przypuszczają, że doszło do połączenia dwóch mniej masywnych gwiazd, z których mniej masywna zawierała dużo wodoru, a ich wspólna masa była na tyle duża, że doszło do zjawiska niestabilności kreacji par.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czerwony nadolbrzym Betelgeza, jedna z najjaśniejszych gwiazd na niebie, przygasła w ciągu ostatnich tygodni bardziej niż przez ostatnie sto lat. Podekscytowani astronomowie z całego świata zastanawiają się co to oznacza. Nie można wykluczyć, że gwiazda wybuchnie i zamieni się w supernową. Nadolbrzymy wciąż kryją wiele zagadek, a naukowcy mają nadzieję, że dzięki obserwowanemu właśnie procesowi, dowiedzą się więcej o takich gwiazdach.
Astronomowie od ponad wieku obserwują, jak Betelgeza raz przygasa, raz robi się jaśniejsza. Materia z gwiazdy wędruje ku jej powierzchni i ponownie tonie w jej wnętrzu, powodując, że powierzchnia jest raz chłodniejsza, raz cieplejsza. Stąd właśnie zmienna jasność gwiazdy.
Richard Wasatonic, astronom z Villanova Univrsity w Pennsylvanii od 25 lat dokonuje pomiarów jasności Betelgezy za pomocą niewielkiego prywatnego teleskopu. W październiku wraz ze swoim kolegą Edwardem Guinanem i astronomem-amatorem Thomasem Calderwoodem zauważyli, że Betelgeza ponownie przygasa. Do grudnia stała się ciemniejsza niż w ciągu ostatnich 25 lat.
Na łamach witryny The Astronomer's Telegram poinformowali o tym innych astronomów. Każdej nocy była ciemniejsza niż nocy poprzedniej, mówi Guinan. Obserwujący spodziewali się, że wkrótce gwiazda przestanie zmniejszać swoją jasność. Jednak tak się nie stało. Dnia 23 grudnia zaktualizowali swój wpis, stwierdzając, że Betelgeza nadal przygasa i jest już ciemniejsza niż była w ciągu ostatni 100 lat, czyli w całym okresie, w którym nauka mierzy jasność gwiazd za pomocą urządzeń, a nie ocenia ją „na oko”.
Betelgeza, która jest zwykle 6. lub 7. najjaśniejszą gwiazdą na niebie, do połowy grudnia bieżącego roku stała się 21. najjaśniejszą gwiazdą nieboskłonu.
Nic więc dziwnego, że pojawiły się głosy, iż możemy być świadkami końca Betelgezy. Na podstawie obliczeń masy astronomowie stwierdzili, że Betelgeza stanie się supernową w wieku około 9 milionów lat. Właśnie tyle mniej więcej lat liczy sobie gwiazda. Już jakiś czas temu obliczano, że Betelgeza stanie się supernową w ciągu najbliższych 100 000 lat. Jeśli nadolbrzym wybuchnie stanie się dla nas tak jasny, jak połowa jasności Księżyca w pełni. Przez wiele miesięcy będziemy mogli obserwować taką supernową nawet za dnia. Nie powinniśmy się jednak obawiać o nasze bezpieczeństwo, gdyż gwiazda znajduje się w odległości około 420 – 640 lat świetlnych od Ziemi.
Niejednokrotnie mieli dotychczas okazję badać supernowe. Nigdy jednak nie udało się obserwować procesów zachodzących zanim gwiazda stanie się supernową. Stąd też nie wiadomo, czy obecne przygasanie gwiazdy oznacza jej rychły koniec.
Betelgeza już kilkukrotnie zwracała na siebie naszą uwagę. Przed 10 laty informowaliśmy, że gwiazda mocno się skurczyła, ale jej jasność nie spadła. Po kilku latach astronomowie odkryli tajemniczą wielką ścianę pyłu, w kierunku której zmierza Betelgeza, a z którą w przyszłości się zderzy. Niedługo później na Betelgezie zaobserwowanie istnienie gorących punktów, a trzy lata temu okazało się, że gwiazda obraca się szybciej, niż powinna.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.