Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Dzięki samozasilającemy się e-bandażowi, który generuje pole elektryczne nad miejscem urazu, czas gojenia rany ulega ogromnemu skróceniu.

Do trudno gojących się przewlekłych ran należą owrzodzenie związane z zespołem stopy cukrzycowej, owrzodzenie żylakowe czy niektóre rany po zabiegach chirurgicznych. Lekarze wypróbowali wiele metod, by wspomóc ich gojenie, w tym ekspozycję na tlen czy terapię czynnikami wzrostu, ale często wykazywały one ograniczoną skuteczność.

Już w latach 60. specjaliści zaobserwowali jednak, że stymulacja elektryczna wspomaga gojenie skóry. Ponieważ sprzęt potrzebny do generowania pola elektrycznego jest często duży i zabieg może wymagać hospitalizacji, Weibo Cai, Xudong Wang i zespół postanowili opracować elastyczny, samozasilający się bandaż, który będzie przekształcać ruchy skóry w terapeutyczne pole elektryczne.

Do zasilania e-bandaża naukowcy wyprodukowali ubieralny nanogenerator. Składa się on z zachodzących na siebie arkuszy poli(tetrafluoroetylenu), folii miedzianej i poli(tereftalanu etylenu). Nanogenerator przekształca ruchy skóry, które występują podczas normalnej aktywności czy oddychania, w niewielkie pulsy elektryczne. Prąd przepływa do 2 elektrod roboczych, które są rozmieszczane po obu stronach rany, by wytwarzać słabe pole elektryczne.

E-bandaż przetestowano na ranach skóry na grzbiecie szczurów. Okazało się, że rany przykryte e-bandażami zamykały się w ciągu 3 dni (w porównaniu do 12 dni w przypadku bandaża bez pola elektrycznego).

Autorzy raportu z pisma ACS Nano uważają, że szybsze gojenie ran ma związek ze wzmożeniem migracji, namnażania i różnicowania fibroblastów pod wpływem pola elektrycznego.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzięki rzadkiej mutacji genetycznej Jo Cameron żyje bez bólu, jej rany szybciej się goją, a kobieta nigdy nie odczuwa lęku i strachu. Przed dwoma laty naukowcy z University College London (UCL) odkryli u niej zmutowany gen FAAH-OUT, a teraz opisali unikatowy mechanizm molekularny, za pomocą którego mutacja wyłącza ekspresję genu FAAH oraz wpływa na inne szlaki molekularne powiązane z gojeniem się ran i nastrojem. Ich odkrycie może stać się przyczynkiem do nowych prac w obszarach, w których Jo Cameron jest tak wyjątkowa.
      Kobieta trafiła pod opiekę genetyków z UCL w 2013 roku, gdy jej lekarz zauważył, że nie odczuwa ona bólu po dużych zabiegach chirurgicznych na biodrze i dłoni. Naukowcy z Londynu przez 6 lat poszukiwali przyczyny tego zjawiska, aż zidentyfikowali gen, który nazwali FAAH-OUT, zawierający rzadką mutację. Połączenie z inną, częściej spotykaną mutacją w genie FAAH, dało Jo unikatowe cechy.
      Co interesujące, gen FAAH-OUT znajduje się w „śmieciowym DNA”. To DNA niekodujące, które stanowi aż 98% genomu, a o którym do niedawna sądzono, że nie odgrywa żadnej roli. Ostatnio pojawia się jednak coraz więcej badań wskazujących na to, że „śmieciowe DNA” jest niezwykle ważne, a jedne z nich wskazują, że być może dzięki niemu jesteśmy ludźmi. Teraz okazało się, że FAAH-OUT wpływa na ekspresję genu FAAH, który stanowi część układu endokannabinoidowego i oddziałuje na odczuwanie bólu, nastrój oraz pamięć. Zrozumienie, w jaki sposób FAAH-OUT wpływa na ekspresję FAAH może pomóc np. w opracowaniu nowych leków przeciwbólowych.
      Dzięki Jo Cameron naukowcy dowiedzieli się, że FAAH-OUT ma wpływ na ekspresję FAAH, a gdy wpływ ten – tutaj w wyniku mutacji – zostaje znacznie zmniejszony, dochodzi do dużej redukcji poziomu aktywności enzymów FAAH. FAAH-OUT to niewielki punkt na rozległym oceanie, który dopiero zaczęliśmy mapować. Stanowi on molekularną podstawę do pozbycia się bólu, zidentyfikowaliśmy też szlaki molekularne wpływające na nastrój i gojenie się ran. A na to wszystko ma wpływ mutacja w FAAH-OUT. Myślę, że nasze badania będą miały istotny wpływ na takie obszary naukowe jak gojenie się ran, depresja i wiele innych, mówi jeden za autorów badań, doktor Andrei Okorokov.
      Analizy pokazały też, że mutacja, którą posiada Jo Cameron, a która wyłączyła FAAH, doprowadziła też do wyłączenia 348 innych genów oraz włączenia 797. Są wśród nich zmiany w szlaku WNT, który jest powiązany z gojeniem się ran. Zaobserwowano na przykład zwiększoną aktywność genu WNT16, który jest wiązany z regeneracją kości. Innymi istotnymi genami, których aktywność została zmieniona są BNDF, wiązany z regulacją nastroju oraz ACKR3, który wpływa na regulację poziomu opioidów. To te zmiany mogą powodować, że Jo Cameron nie czuje niepokoju, strachu czy bólu.
      Początkowe odkrycie mutacji genetycznej u Jo Cameron było niezwykle ekscytujące. Ale dopiero teraz zaczyna robić się naprawdę ciekawie. Dzięki dokładnemu zrozumieniu, co dzieje się na poziomie molekularnym możemy próbować zrozumieć, jak działa cały mechanizm biologiczny, a to otwiera drogę do odkrycia leków, które pewnego dnia będą miały olbrzymi wpływ na życie pacjentów, dodaje profesor James Cox.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Instytutu Studiów Biologicznych Salk opracowali technikę, która pozwala bezpośrednio przekształcić komórki otwartych ran w nowe komórki skóry. Podejście bazuje na reprogramowaniu do stanu "macierzystopodobnego" (ang. AAV-based in vivo reprogramming).
      Przyda się to w leczeniu różnych uszkodzeń skóry (np. stopy cukrzycowej i oparzeń), a także do przeciwdziałania skutkom starzenia czy badania nowotworów skóry.
      Nasze obserwacje stanowią wstępny dowód na regenerację in vivo całej trójwymiarowej tkanki, takiej jak skóra, a nie jak wcześniej wykazano, tylko poszczególnych typów komórek - podkreśla prof. Juan Carlos Izpisua Belmonte.
      Wrzody skórne są zazwyczaj leczone chirurgicznie; wrzód pokrywa się przeszczepioną skórą. Gdy jest on jednak wyjątkowo duży, lekarzom może być trudno pozyskać odpowiednią ilość skóry. W takich przypadkach izoluje się komórki macierzyste skóry i po etapie hodowli w laboratorium przeszczepia się je pacjentowi. Procedura ta nie zawsze jest jednak skuteczna i wymaga czasu, co może narażać życie chorego.
      Izpisua Belmonte i Masakazu Kurita, który ma doświadczenie w chirurgii plastycznej, wiedzieli, że kluczowym krokiem gojenia ran jest migracja albo transplantacja podstawnych keratynocytów. Te macierzystopodobne komórki są prekursorami dla różnych typów komórek skóry. Niestety, duże rany, w których doszło do utraty licznych warstw skóry, nie mają już podstawnych keratynocytów. Nawet jeśli się goją, komórki namnażające się w tym rejonie biorą głównie udział w zamknięciu rany i stanie zapalnym, a nie odbudowie skóry.
      Panowie chcieli więc sprawdzić, czy bez pobierania z ciała da się te inne komórki bezpośrednio przekształcić w podstawne keratynocyty. Chcieliśmy uzyskać skórę w miejscu, gdzie nie było skóry, od której można by zacząć - wyjaśnia Kurita.
      By ustalić, co trzeba zmienić, reprogramując, naukowcy zaczęli od porównania poziomów białek w 2 typach komórek: zapalnych i keratynocytach. W ten sposób zidentyfikowali 55 czynników - białek i RNA - potencjalnie zaangażowanych w definiowanie unikatowej tożsamości podstawnych keratynocytów. Później metodą prób i błędów i na drodze dalszych eksperymentów zawęzili listę do 4 czynników, które mogłyby pośredniczyć w konwersji do keratynocytów.
      Gdy miejscowo potraktowano nimi wrzody skórne myszy, w ciągu 18 dni rozwinął się tu nabłonek. Z czasem rozrósł się i połączył otaczającą skórę nawet w rozległych zmianach. Podczas testów molekularnych czy genetycznych 3 i 6 miesięcy później wygenerowane komórki zachowywały się jak zdrowe komórki skóry.
      By zoptymalizować technikę, naukowcy planują kolejne badania. Chcą też przetestować dodatkowe modele wrzodów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Osnabrück University oraz Ozouga Chimpanzee Project są pierwszymi, którzy zaobserwowali, że szympansy celowo nakładają owady na otwarte rany swoje i swoich towarzyszy. Wiele gatunków zwierząt wykazuje zachowania, które możemy porównać do ludzkiego zażywania lekarstw. Zjawisko to zyskało nazwę zoofarmakognozji. Obserwowano je u wielu gatunków, w tym owadów, płazów, ptaków i ssaków. Nasi dwaj najbliżsi krewni, szympansy i bonobo, zjadają rośliny zawierające substancje przeciwrobacze i żują gorzkie liście, które zabijają pasożyty, mówi biolog Simone Pika.
      Teraz zaś udokumentowano pierwszy przypadek nakładania materiału pochodzącego od zwierząt na otwarte rany. "Mamy tutaj pierwsze dowody na to, że szympansy celowo łapią owady i nakładają je na rany. Chcemy teraz zbadać potencjalne korzyści, jakie odnoszą z takiego zachowania", mówi prymatolog Tobias Deschner.
      Po raz pierwszy zachowanie takie zauważono w 2019 roku. Alessandra Mascaro, ochotniczka pracująca przy projekcie badania szympansów obserwowała szympansicę Suzee. Patrzyłam, jak zajmuje się zranioną stopą swojego nastoletniego syna, Sia. Zauważyłam, że trzyma coś w ustach, wyjmuje i nakłada na ranę syna. Wieczorem przejrzałam wykonane przez siebie nagranie i zauważyłam, że Suzee najpierw wyciągnęła rękę i złapała coś, co wsadziła sobie do ust, a następnie z ust przeniosła to na ranę syna, mówi.
      Mniej więcej tydzień później inna badaczka, doktorantka Lara Southern zauważyła podobne zachowanie u samca Freddy'ego. Naukowcy stwierdzili, sposób i miejsce chwytania wskazują, że szympansy łapią latające owady. Przed kolejny rok uczeni z uwagą przyglądali się szympansom, u których widać było otwarte rany. W tym czasie zauważyli 22 tego typu zachowania. W większości przypadków małpy nakładały owady na swoje własne rany.
      Niemal rok po pierwszej obserwacji dokonanej przez Mascaro zauważono coś innego. Samiec Littlegray miał głęboką ranę goleni. Carol, samica, która go iskała, nagle złapała owada. Podała go Littlegreyowi, a ten nałożył go sobie na ranę. Następnie Carol i dwa inne dorosłe szympansy dotykały rany i przesuwały w niej owada. Trzy niespokrewnione zwierzęta wykonywały tę czynność najwyraźniej po to, by członek ich grupy odniósł z tego korzyść, mówi Lara Southern.
      Naukowcy przypuszczają, że nakładanie owadów ma właściwości przeciwzapalne lub odkażające. Musimy pamiętać, że i ludzie od co najmniej 3400 lat stosują owady w podobny sposób, a współczesna nauka dowiodła, że w ten sposób dostarczają do organizmów antybiotyki i zwalczają wirusy. Nie można jednak wykluczyć, że zaobserwowane zachowanie ma wyłącznie znaczenie kulturowe, a nie medyczne. Podobnie zresztą jak w wielu ludzkich kulturach, gdzie stosowane środki nie mają na celu przynoszenia korzyści zdrowotnych.
      Interesują mnie zdolności poznawcze szympansów, dlatego dla mnie najbardziej uderzającym zjawiskiem było obserwowanie, że zwierzęta nie tylko zajmują się swoimi ranami, ale również ranami innych niespokrewnionych zwierząt. Takie przykłady wyraźnie prospołecznego zachowania są rzadko obserwowane u zwierząt innych niż człowiek i myślę, że przekonają one nawet sceptyków, mówi Pika.
      W następnym etapie swoich badań naukowcy chcą zebrać owady, jakie nakładały sobie na rany szympansy i sprawdzić, czy ich stosowanie może mieć jakieś znaczenie farmaceutyczne. Ponadto uczeni zamierzają dokładnej sprawdzić, jak przebiegają tego typu interakcje. Kto jest głównym aktorem takich zachowań, a kto głównym odbiorcą tych działań oraz jak przebiega proces społecznego przekazywania wiedzy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W amerykańskim Narodowym Instytucie Standardów i Technologii (NIST) powstał kwantowy detektor, który wykrywa słabe pole elektryczne z czułością ponad 10-krotnie większą niż dotychczas stosowane czujniki. Urządzenie przyda się zarówno w obrazowaniu struktur biologicznych, jak i w fizyce, gdzie może posłużyć m.in. do wykrywania ciemnej materii.
      Czujnik zbudowano ze 150 jonów berylu uwięzionych w magnetycznej pułapce. Jony spontanicznie ułożyły się w dwuwymiarowy kryształ o średnicy 200 mikrometrów. Niezwykłą czułość struktury uzyskano poprzez kwantowe splątanie ruchu jonów i ich spinów.
      Pomiary zewnętrznego pola elektrycznego dokonywane są poprzez mierzenia wzbudzenia kryształu, który pod jego wpływem zaczyna drgać przesuwając się w górę i w dół na podobieństwo membrany bębna. Badając zmiany spinu naukowcy są w stanie określić stopień wzbudzenia kryształu. Dzięki temu możliwy jest pomiar pól elektrycznych z ponad 10-krotnie większą dokładnością niż najczulszy z dotychczasowych sensorów.
      Znaleźliśmy sposób na stworzenie kwantowych stanów splątanych, które są niezwykle czułe na niewielkie przemieszczenia jonów wywoływane słabym polem elektrycznym. To elegancka demonstracja tego, w jaki sposób można wykorzystać efekty kwantowe do uzyskania przewagi nad klasycznymi systemami, wyjaśnia Kevin Gilmore z NIST.
      Pomiary rozpoczynają się od wykorzystania mikrofal do nadania spinom wszystkich jonów tej samej wartości. Później za pomocą laserów splątano spiny z ruchem jonów. Następnie całość jest wzbudzana za pomocą oscylującego pola elektrycznego. Gdy kryształ drga, te same mikrofale i lasery są wykorzystywane do usunięcia splątania, a informacje o ruchu jonów trafiają do ich spinów. Spiny łatwo jest mierzyć i to właśnie z nich odczytywane są dane o przemieszczeniu się jonów.
      Splątanie jonów pozwala na usunięcie z nich naturalnego kwantowego szumu. Natomiast później splątanie jest usuwane, gdyż pomiar stanu splątanego bez zniszczenia informacji dzielonych pomiędzy spinem a ruchem jonów jest bardzo trudny.
      Takie rozwiązanie pozwala na bardzo precyzyjne określenie, na ile pole elektryczne wpłynęło na jony. Gilmore zapewnia, że dzięki takiej architekturze, kryształ może być na tyle czuły, by wykryć obecność aksjonów, hipotetycznych cząstek tworzących ciemną materię, o których sądzi się, że generują niewielkie oscylujące pola elektryczne.
      Teraz, gdy naukowcy wykazali, że ich architektura działa, rozpoczęli prace nad zbudowaniem większego czujnika. Ich celem jest stworzenie trójwymiarowego kryształu złożonego z około 100 000 jonów. W ten sposób czułość urządzenia powinno zwiększyć się jeszcze 30-krotnie. Jednocześnie staramy się usunąć dominujące źródło szumu, którym są fluktuacje częstotliwości kryształu. Niewykluczone, że w trójwymiarowym krysztale jony będą lepiej schłodzone, co powinno zmniejszyć te fluktuacje, dodaje Gilmore.
      Jeśli uda się zbudować taki trójwymiarowy kryształ i usunąć z niego dominujące źródło szumu to urządzenie może zostać wykorzystane do wykrywania ciemnej materii. Wiemy, że 85% materii we wszechświecie to ciemna materia. Nie wiemy jednak, z czego jest ona zbudowana. Nasz czujnik może w przyszłości pozwolić na odkrycie tej tajemnicy, stwierdziła teoretyk Ana Maria Rey z Joint Institute for Laboratory Astrophysics (JILA), jednego z wiodących amerykańskich instytucji badawczych w dziedzinie fizyki.
      Wyniki badań szczegółowo opisano na łamach Science.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pod wpływem pola elektrycznego w bardzo krótkim czasie zwiększa swoją lepkość i tworzy… ciało stałe. To główna właściwość cieczy elektroreologicznej. Przez lata znalazła szereg zastosowań, ale brakowało dobrego teoretycznego wyjaśnienia tego, jak powstaje. Aż do teraz. Wszystko zmieniło się za sprawą grupy z Wydziału Fizyki Politechniki Warszawskiej.
      Nasi naukowcy: doktorant mgr inż. Michał Łepek, dr hab. inż. Agata Fronczak, prof. uczelni i dr hab. inż. Piotr Fronczak, prof. uczelni efekty swoich badań opisali w pracy Combinatorial solutions to coagulation kernel for linear chains, opublikowanej w czasopiśmie Physica D: Nonlinear Phenomena.
      Jak zlepiają się cząstki?
      Prowadzone przez badaczy z PW prace zaowocowały rozwiązaniem teoretycznym procesu koagulacji („zlepiania się” cząstek), w którym następuje tworzenie tzw. łańcuchów liniowych, czyli grup cząstek ułożonych w łańcuchy. Najbardziej znanym przykładem takiego procesu jest koagulacja cieczy elektroreologicznej. Ze względu na swoje wyjątkowe właściwości zalicza się ją do tzw. materiałów inteligentnych (smart materials).
      Przy obecności pola elektrycznego ciecz taka zostaje zatrzymana w postaci zestalonej pomiędzy elektrodami – wyjaśnia Michał Łepek. W momencie wyłączenia pola elektrycznego układ wraca do postaci ciekłej.
      Ciecz elektroreologiczna została opatentowana w 1947 roku przez amerykańskiego naukowca Willisa Winslowa.
      Przez lata znalazła różnorodne zastosowania inżynierskie, m.in. w hamulcach, sprzęgłach, amortyzatorach, zaworach hydraulicznych, polerowaniu ściernym i wyświetlaczach dotykowych – wylicza Michał Łepek.

      Do tej pory brakowało jednak ścisłego i efektywnego opisu teoretycznego procesu koagulacji takiej cieczy.
      W naszej pracy „Combinatorial solutions to coagulation kernel for linear chains” wyprowadziliśmy równania, pozwalające wyznaczyć średni rozkład wielkości tworzących się łańcuchów na dowolnym etapie procesu scalania cząstek – tłumaczy Michał Łepek. Rozwiązania te dostarczają także informacji na temat odchylenia standardowego od średniego rozkładu (jakże przydatne w pracy z rzeczywistymi danymi!). Rozwiązania teoretyczne porównaliśmy z wynikami symulacji numerycznych oraz z danymi eksperymentalnymi. Skorzystaliśmy z wyników eksperymentu, którym była agregacja cząstek polistyrenu w mieszaninie H2O i D2O, czyli wody i ciężkiej wody.
      Naukowcy z Wydziału Fizyki PW otrzymali bardzo dobrą, niespotykaną do tej pory zgodność. W ten sposób, co podkreślili także recenzenci, po ponad 70 latach od wynalezienia cieczy elektroreologicznej w końcu uzyskano satysfakcjonujące rozwiązanie teoretyczne tego procesu.
      Nasza praca daje konkretny opis statystyczny cząstek w dowolnym momencie koagulacji – mówi Michał Łepek. Można ten opis wykorzystać do lepszego zrozumienia dynamiki procesu i być może do polepszenia sprawności urządzeń, które korzystają z koagulacji elektroreologicznej (wspomniane wcześniej hamulce, zawory, sprzęgła…). Niewykluczone, że opis ten może się przydać szerzej w wyjaśnianiu zjawisk, zachodzących w zawiesinach nanocząsteczkowych, które mogą być elektrycznie lub magnetycznie aktywne. Nie można wykluczyć (ale to już czyste fantazjowanie), że za rok, dwa lub pięćdziesiąt ktoś odkryje proces w socjofizyce lub biologii, który zachodzi dokładnie według rozpracowanego przez nas schematu agregacji – takie rzeczy w nauce się zdarzają.
      Praca naszych naukowców z Wydziału Fizyki ma także inną zaletę.
      Wzory, które uzyskaliśmy, są (z naszego punktu widzenia) bardzo proste – zaznacza Michal Łepek. Nie potrzeba żadnej wiedzy z fizyki ani tym bardziej fizyki teoretycznej, żeby je zastosować. Wystarczy wziąć równania, wpisać, jaki rozmiar układu i czas nas interesują, i otrzymujemy wynik. Każdy inżynier (lub też nieinżynier) może to zrobić na swoim komputerze. Tym bardziej, że zamieściliśmy w Internecie bibliotekę programistyczną, napisaną właśnie na potrzeby tej pracy. Wszystko jest zatem podane na tacy. To nowość. Do tej pory teoretyczne studia nad koagulacją były tematem podejmowanym głównie przez wąską grupę naukowców. Liczę, że dzięki uproszczeniu wyników opisu teoretycznego, ktoś z politechniki naszej lub innej będzie w stanie ten opis wykorzystać do swojej pracy.
      Nowe badania
      Teraz zespół z PW chce zbadać, czy opracowany opis koagulacji elektroreologicznej można zastosować też do koagulacji magnetoreologicznej (czyli tej pod wpływem pola magnetycznego).
      To byłoby szczególnie ciekawe, bo warunki dla koagulacji magnetoreologicznej dużo łatwiej otrzymać w rzeczywistym zastosowaniu – zwraca uwagę Michał Łepek. Ciecz magnetoreologiczna jest używana chociażby w amortyzatorach pojazdów armii amerykańskiej.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...