Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Gdy ciepło przestaje być zagadką, spintronika staje się realniejsza

Rekomendowane odpowiedzi

Rozwój spintroniki zależy od materiałów gwarantujących kontrolę nad przepływem prądów spolaryzowanych magnetycznie. Trudno jednak mówić o kontroli, gdy nieznane są szczegóły transportu ciepła przez złącza między materiałami. Cieplna luka w naszej wiedzy została właśnie wypełniona dzięki polsko-niemieckiemu zespołowi fizyków, który po raz pierwszy dokładnie opisał zjawiska dynamiczne zachodzące na złączu między ferromagnetykiem a półprzewodnikiem.

Spintronika to następczyni wszechobecnej elektroniki. W urządzeniach spintronicznych prądy elektryczne próbuje się zastępować prądami spinowymi. Obiecującym materiałem dla tego typu zastosowań wydaje się być złącze arsenku galu z krzemianem żelaza: na każde cztery elektrony przepływające przez złącze aż trzy niosą tu informację o kierunku momentu magnetycznego. Do tej pory niewiele było jednak wiadomo, jak zmieniają się właściwości dynamiczne złącza, decydujące o przepływie ciepła. Połączenie sił Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, Instytutu Technologicznego w Karlsruhe (KIT), Instytutu Paula Drudego w Berlinie i ośrodka badawczego DESY w Hamburgu pozwoliło tę zagadkę wreszcie rozwiązać.

Układy z krzemianu żelaza Fe3Si i arsenku galu GaAs są szczególne. Oba materiały znacznie różnią się właściwościami: pierwszy jest bardzo dobrym ferromagnetykiem, drugi to półprzewodnik. Natomiast stałe sieci, czyli charakterystyczne odległości między atomami, w obu materiałach różnią się zaledwie o 0,2%, są więc niemal identyczne. W rezultacie materiały te świetnie się łączą, a na złączach nie ma defektów ani znaczących naprężeń - mówi dr hab. Przemysław Piekarz (IFJ PAN).

Grupa skoncentrowała się na przygotowaniu teoretycznego modelu drgań sieci krystalicznych w badanym złączu. Istotną rolę odegrało tu oprogramowanie PHONON, stworzone i od ponad 20 lat rozwijane przez prof. dr hab. Krzysztofa Parlińskiego (IFJ PAN). W oparciu o podstawowe prawa mechaniki kwantowej wyliczane są tu siły oddziaływań między atomami, co pozwala rozwiązywać równania opisujące ruch atomów w sieciach krystalicznych.

Dr hab. Małgorzata Sternik (IFJ PAN), która wykonała większość obliczeń, wyjaśnia: W naszym modelu podłożem jest arsenek galu, którego najbardziej zewnętrzna warstwa składa się z atomów arsenu. Nad nią znajdują się naprzemiennie ułożone warstwy z atomami żelaza i krzemu oraz samego żelaza. Drgania atomowe wyglądają inaczej dla litego kryształu, a inaczej w pobliżu interfejsu. Dlatego badaliśmy, jak zmienia się widmo drgań w zależności od odległości od interfejsu.

Dynamika atomów w kryształach nie jest przypadkowa. Materiały te charakteryzują się dużym uporządkowaniem. W efekcie ruch atomów nie jest tu chaotyczny, lecz podlega pewnym, niekiedy bardzo złożonym wzorcom. Za transport ciepła odpowiadają głównie fale akustyczne poprzeczne. Oznacza to, że przy analizie dynamiki sieci badacze musieli ze szczególną uwagą przyglądać się drganiom atomowym zachodzącym w płaszczyźnie równoległej do złącza. Gdyby fale drgań atomów w obu materiałach były do siebie dopasowane, ciepło efektywnie przepływałoby przez złącze.

Próbki materiałów Ge/Fe3Si/GaAs, zawierające różną liczbę monowarstw krzemianu żelaza (3, 6, 8 oraz 36), zostały przygotowane w Instytucie Paula Drudego przez Jochena Kalta, doktoranta w Instytucie Technologicznym w Karlsruhe. Same doświadczenia zrealizowano w synchrotronie Petra III, na linii pomiarowej Dynamics Beamline P01 w ośrodku DESY.

Pomiar widma drgań atomowych w ultracienkich warstwach jest wielkim wyzwaniem dla fizyków ciała stałego - mówi kierujący eksperymentem dr Svetoslav Stankov (KIT) i dodaje: Dzięki wyjątkowym własnościom promieniowania synchrotronowego, potrafimy obecnie za pomocą nieelastycznego rozpraszania jądrowego wyznaczać z dużą rozdzielczością widmo drgań atomowych w nanostrukturach. W naszych pomiarach wiązka promieniowania synchrotronowego padała na złącze w kierunku praktycznie równoległym do jego powierzchni. Takie ustawienie gwarantowało możliwość obserwacji drgań atomowych zachodzących równolegle do złącza. Co więcej, jest to pomiar selektywny dla atomów żelaza, bez zaburzenia pochodzącego od tła.

Okazało się, że mimo podobieństw struktury krystalicznej obu materiałów, drgania atomów w pobliżu interfejsu znacznie różnią się od tych w litym materiale. Obliczenia z pierwszych zasad doskonale pokryły się z wynikami eksperymentalnymi, odtwarzając nowe cechy w widmach drgań atomów.

Niemal doskonała zgodność teorii z eksperymentem otwiera drogę do nanoinżynierii fononowej, która może doprowadzić do powstania bardziej wydajnych urządzeń termoelektrycznych i efektywnego zarządzania przepływem ciepła - podsumowuje dr Stankov.

Złącze Fe3Si/GaAs okazało się doskonałym układem do badania własności dynamicznych i spintronicznych. W przyszłości zespół naukowców, finansowany przez Narodowe Centrum Nauki (2017/25/B/ST3/02586), Helmholtz Association (HGF, VH-NG-625) i German Ministry for Research and Education (BMBF, 05K16VK4), zamierza rozszerzyć zakres badań interfejsu w celu dokładnego poznania jego własności elektronowych i magnetycznych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Międzynarodowa grupa naukowa pracująca pod przewodnictwem inżynierów z Narodowego Uniwersytetu Singapuru opracowała nowe urządzenie spintroniczne do manipulowania cyfrową informacją. Jest ono 20-krotnie bardziej wydajne i 10-krotnie bardziej stabilne niż dostępne obecnie rozwiązania komercyjne. Nowe urządzenie zostało opracowane we współpracy z naukowcami z Instytutu Technologicznego Toyoty oraz Uniwersytetu Koreańskiego.
      Nasze odkrycie może stać się nową platformą rozwojową dla przemysłu spintronicznego, który obecnie zmaga się z problemami związanymi z niestabilnością i skalowalnością, gdyż wykorzystuje się tutaj bardzo cienkie elementy magnetyczne, mówi profesor Yang Hyunso z Singapuru.
      Obecnie na świecie powstają olbrzymie ilości cyfrowych informacji. Istnieje więc duże zapotrzebowanie na tanie, energooszczędne, stabilne i skalowalne produkty do przechowywania tej informacji i manipulowania nią. Stawiane warunki mogłyby spełniać materiały spintroniczne bazujące na rozwiązaniach ferromagnetycznych. Jednak wciąż są one bardzo drogie z powodu problemów ze skalowalnością i stabilnością. Układy pamięci bazujące na ferromagnetykach nie mogą mieć grubości większej niż kilka nanometrów, gdyż efektywność ich okablowania wykładniczo spada wraz z rosnącą grubością. Zaś obecna grubość jest niewystarczająca, by zapewnić stabilne przechowywanie danych w warunkach naturalnie wahających się temperatur, wyjaśnia doktor Yu Jiawei.
      Uczeni, aby poradzić sobie z tym problemem, zaprzęgli do pracy materiały ferrimagnetyczne. Zauważyli, że mogą być one 10-krotnie grubsze niż materiały ferromagnetyczne i nie wpływa to na ich wydajność. W ferrimagnetykach spin elektronów napotyka na minimalne opory. To jest taka różnica, jakbyśmy jechali samochodem drogą 8-pasmową, w porównaniu do jazdy 1-pasmową ulicą w mieście. Dla spinu ferromagnetyk to jak wąska ulica w mieście, zaś ferrimagnetyk jest jak szeroka autostrada, mówi jeden z badaczy, Rahul Mishra.
      Pamięć stworzona z materiału ferrimagnetycznego okazała się 10-krotnie bardziej stabilna i 20-krotnie bardziej wydajna niż pamięć z ferromagnetyku. Zdaniem profesora Yanga, za różnicę w wydajności odpowiada unikatowe uporządkowanie atomów.W ferrimagnetykach sąsiadujące ze sobą domeny magnetyczne są zwrócone do siebie przeciwnymi znakami. Zaburzenia spinu powodowane przez jeden atom, są kompensowane przez sąsiedni. Dzięki temu informacja może przepływać szybciej, dalej i przy mniejszym zużyciu energii, stwierdził.
      Na kolejnym etapie badań naukowcy przyjrzą się już nie tylko problemowi przesyłania informacji w ferrimagnetykach, ale zbadają też tempo jej odczytu i zapisu. Spodziewają się, że będzie ono niezwykle szybkie. Chcą też rozpocząć współpracę z przemysłem, by ich wynalazek jak najszybciej trafił do praktycznego użycia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Utah powstał spintroniczny tranzystor, dzięki któremu udało się na rekordowo długi czas uporządkować spiny elektronów w krzemowym układzie scalonym w temperaturze pokojowej. To kolejny ważny krok, dzięki któremu mogą powstać spintroniczne układy scalone. Będą działały one szybciej i zużywały znacznie mniej energii niż układy elektroniczne.
      Urządzenia elektroniczne korzystają z ujemnego poruszającego się ładunku elektronów. Urządzenia spintroniczne będą używały zarówno ładunku jak i spinu elektronów. Dzięki temu powstaną mniejsze, szybsze i bardziej wydajne komputery - mówi profesor Ashutosh Tiwari, który wraz z doktorantem Nathanem Grayem stworzył spintroniczny tranzystor działający w temperaturze pokojowej. Tranzystory takie umieszczono na krzemie i uporządkowano w nich spiny. Udało się je utrzymać w uporządkowanym stanie przez rekordowo długi czas 276 bilionowych części sekundy.
      Tiwari i Gray wykorzystali elektryczność i pole magnetyczne do wprowadzenia elektronów z uporządkowanym spinem do krzemowej kości. Użyli przy tym tlenku magnezu jako tunelu, który umożliwił elektronom przejście od jednej niklowo-żelaznej elektrody do drugiej. Bez tlenku magnezu spiny elektronów natychmiast ułożyłyby się w sposób przypadkowy.
      Całość działa w temperaturze pokojowej, podczas gdy większość eksperymentalnych urządzeń spintronicznych wymaga bardzo niskich temperatur, poniżej -128 stopni Celsjusza, by uporządkować spiny - mówi profesor Tiwari. Uczeni pokryli fragment krzemu o wymiarach 2,5x0,8x0,2 centymetra cienką warstwą tlenku magnezu i umieścili na tym kilkanaście tranzystorów zbudowanych z niklu i żelaza. Każdy z tranzystorów miał trzy elektrody. Jedna z nich służyła do wprowadzenia elektronów oraz wykrycia ich obecności, a dwie pozostałe, ujemna i dodatnia, mierzyły napięcie. Podczas eksperymentu podłączono prąd elektryczny do elektrody wejściowej oraz negatywnej każdego tranzystora.
      To kolejny spintroniczny rekord pobity na tej uczelni. Przed kilkoma miesiącami powstał tam najmniejszy w historii układ pamięci. Następnie całość poddano działaniu pola magnetycznego i mierzono zmiany napięcia. Badając zmiany napięcia w czasie działania pola magnetycznego mogliśmy sprawdzić spin oraz czas, w jakim był on uporządkowany - mówi Tiwari.
      Jeśli w przyszłości chcemy wykorzystywać spintronikę w praktyce, musimy opracować takie urządzenia, w których elektrony z uporządkowanym spinem będą w stanie utrzymać porządek przez odpowiednio długi czas potrzebny do przebycia odpowiedniej odległości.
      Tiwariemu i Grayowi udało się przechować spin przez 276 pikosekund, co oznacza, że elektrony przebyłyby w tym czasie 328 nanometrów w układzie krzemowym. To naprawdę spora odległość. To niemal 10-krotnie więcej niż potrzebujemy i dwukrotnie więcej niż trzeba, gdybyśmy zamiast tlenku magnezu użyli tlenku aluminium - stwierdza Tiwari. Profesor mówił o tlenku aluminium, gdyż był on wykorzystywany we wcześniejszych eksperymentach przez uczonych z Holandii. Najnowsze badania pokazały jednak, że tlenek magnezu lepiej się sprawdza.
    • przez KopalniaWiedzy.pl
      Rozwój nauki i technologii często zadziwia odkryciami. Ale bywa, że jeszcze większe zdumienie budzą odkrycia pojawiające się na skrzyżowaniu różnych dziedzin badań. Takim krzyżowym wynalazkiem jest termospintronika, która pozwoli być może stworzyć komputer napędzany ciepłem, zamiast prądu.
      Głównym celem badań technologicznych w dziedzinie elektroniki jest zwiększenie szybkości i wydajności mikroprocesorów oraz pojemności pamięci. Głównym problemem i największą zawadą jest wydzielanie się ciepła. Nie ma prądu elektrycznego bez ciepła i trudno spodziewać się „zimnych" układów. Nasze komputery mogłyby działać wielokrotnie szybciej, gdyby nie wydzielanie ciepła. Niestety, szybsza praca - większa temperatura - szybsze przegrzanie i spalenie się układu scalonego.
      Prace mające na celu ominięcie tego problemu toczyły się w dwóch zasadniczych kierunkach: zmniejszenia emisji ciepła lub jego szybsze odprowadzanie i wykorzystanie (na przykład, dzięki efektowi termoelektrycznemu, do produkcji prądu); bardziej ambitna droga i dalsza perspektywa to układy spintroniczne. Spintronika to nauka o spinie (momencie pędu, właściwości kwantowej) elektronów. Wykorzystanie spinu zamiast ładunku elektrycznego pozwoliłoby na budowę ultraszybkich procesorów i bardzo pojemnych pamięci.
      Arsenek galu jest znanym półprzewodnikiem, wykorzystywanym obok krzemu, do produkcji układów elektronicznych. Domieszkowanie go manganem tworzy materiał, który służy do eksperymentowania z kontrolą spinu elektronów przy pomocy pola magnetycznego. Naukowcy z Ohio State University: Joseph Heremans, Roberto Myers oraz Christopher Jaworski dokonali niezwykłego odkrycia. Arsenek galowo-manganowy, przygotowany w postaci cienkiej błony z pojedynczej warstwy kryształów poddawany był doświadczeniom. Podczas prac zauważono, że spin nie układa się tak, jak się spodziewano - winne okazało się ciepło. Spin w takim materiale układał się w zależności od temperatury po obu stronach błony, efekt dawał się łatwo i skutecznie kontrolować - po gorącej stronie skierowany był w górę, po zimnej w dół.
      Jeszcze większym zaskoczeniem był fakt, że efekt ten potrafi przenosić się pomiędzy fragmentami krystalicznej błony nie połączonymi ze sobą. Kiedy płytkę arsenku galowo-manganowego przecięto na pół, nie wpłynęło to na zachowanie całości układu. Dla elektronów przerwa jest barierą, dla ich spinu - nie. Identyczne wyniki uzyskał zespół japońskiego Tōhoku University. Mimo wielu eksperymentów źródło efektu pozostaje nadal niezrozumiałe dla teoretyków.
      Nie przeszkadza to jednak w przewidywaniu zastosowań dla termospintroniki, jak nazwano nową dziedzinę badań. Niewykluczone, że możliwe stanie się zbudowanie mikroprocesorów, które nagrzewając się podczas intensywnej pracy, uruchamiały będą dodatkowe moce obliczeniowe i pamięć oparte na efekcie spin-Seebecka, a być może układy scalone wykorzystujące jako źródło zasilania nie prąd, lecz ciepło.
    • przez KopalniaWiedzy.pl
      Uczeni z University College London (UCL) oraz florydzkiego National High Magnetic Field Lab (NHMFL) dowodzą, że bizmut znacznie lepiej nadaje się do produkcji układów spintronicznych niż faworyzowany fosfor.
      Bizmut jest kompatybilny z krzemem, jednak pierwiastkiem tym się praktycznie nie zajmowano. Wysiłki specjalistów pracujących nad spintroniką skupiły się wokół fosforu dlatego, że już obecnie jest on używany w krzemie.
      Brytyjscy i amerykańscy uczeni odkryli, że bizmut jest znacznie lepszym materiałem niż fosfor. Bizmut to najcięższy stabilny atom. I o ile fosfor daje nam do dyspozycji dwie wartości spinu, to bizmut na 5 orbitalach może przechowywać po 2 wartości, pozwalając na zapisanie danych w 10 kierunkach spinu. To z kolei czyni bizmut znacznie lepszym niż fosfor kandydatem na materiał wykorzystywany w komputerach kwantowych.
      Uczeni z UCL i NHMFL proponują połączenie zalet obu pierwiastków. W ich koncepcji bizmut służyłby do przechowywania danych, a fosfor do kontroli ich przepływu.
      Główny autor badań, doktor Gavin Morley z UCL stwierdził: Podczas badań pokonaliśmy takie przeszkody jak użycie bizmutu do przygotowania, kontroli i przechowywania kwantowej informacji. W tym przypadku większy znaczy lepszy gdyż większe jądro atomu bizmutu zapewnia więcej miejsca na przechowywanie kwantowej informacji.
    • przez KopalniaWiedzy.pl
      Uczeni z Ohio State University (OSU) zaprezentowali pierwszy układ spintronicznej pamięci z tworzyw sztucznych. Plastik może zatem w przyszłości stać się alternatywą dla półprzewodników.
      W najnowszym numerze Nature Materials Arthur J. Epstein, profesor fizyki i chemii opisuje jak wraz z kolegami stworzyli protytypową plastikową pamięć spintroniczną, używając do tego celu technik wykorzystywanych standardowo przez przemysł półprzewodnikowy. Epstein opisuje nowy materiał jako hybrydę organicznego półprzewodnika i magnetycznego półprzewodnika polimerowego.
      Spintronika to, obok mechaniki kwantowej, jedna z potencjalnych dróg, którymi rozwiną się komputery przyszłości. Wykorzystanie spinu elektronów w miejsce ich obecności bądź braku, ma liczne zalety. Od możliwości przechowania i przesłania dwukrotnie większej ilości danych na każdy elektron, poprzez energooszczędność i związane z tym znacznie mniejsze wydzielanie ciepła oraz możliwość gęstszego upakowania poszczególnych elementów układów scalonych.
      Jeśli zaś moglibyśmy produkować spintroniczne tworzywa sztuczne, będziemy mieli do czynienia z lekką i elastyczną elektroniką.
      Kamieniem milowym na drodze do plastikowej spintroniki stał się tetracyjanoetanol wanadu, pierwszy organiczny magnes, pracujący w temperaturze powyżej temperatury pokojowej. Jego twórcami są Epstein oraz Joel S. Miller z University of Utah.
      Naszym głównym osiągnięciem jest użycie tego polimerowego magnetycznego półprzewodnika jednocześnie jako polaryzatora spinu, co oznacza, że możemy zapisywać dane używając słabego pola magnetycznego, oraz wykrywacza spinu, co pozwala nam odczytywać dane - mówi doktor Jung-Woo Yoo, który współpracował z oboma uczonymi. Jesteśmy bliżej opracowania podobnego, całkowicie już organicznego, urządzenia - dodał.
      Na obecnym stadium prototyp wygląda jak cienki pasek tworzywa sztucznego umieszczony pomiędzy dwoma warstwami metalicznego ferromagnetyku.
      W prototypowej pamięci elektrony są umieszczane w polimerze, a magnes nadaje kierunek ich spinowi. Elektrony mogą następnie przejść do konwencjonalnej warstwy magnetycznej, ale tylko wówczas, gdy ich spin jest jednakowy. W przeciwnym razie zbyt duża rezystancja uniemożliwia przejście. Odczyt danych polega na pomiarze wartości oporu.
      Podczas testów materiał został poddany działaniu pola magnetycznego, którego siła z czasem ulegała zmianie. Naukowcy, by sprawdzić, czy udało się uzyskać w elektronach dokładnie takie dane, jakie chcieli, przepuścili prąd przez obie warstwy magnetyczne. Badania wykazały, że w zapisie nie było błędów.
      Każda fabryka, która obecnie produkuje układy scalone, jest w stanie wykonać takie urządzenia. Dodatkowo do jego wytworzenia wykorzystaliśmy temperatury pokojowe, cały proces jest zatem bardzo przyjazny środowisku - powiedział Yoo.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...