Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak wcześniej i dokładniej wytropić oznaki neurodegeneracji?

Rekomendowane odpowiedzi

Symptomy chorób neurodegeneracyjnych, widoczne lata przed pojawieniem się objawów klinicznych, można wykryć podczas badań próbek medycznych za pomocą mikroskopii fluorescencyjnej. Warunkiem jest jednak użycie odpowiednio czułych i selektywnych barwników, wiążących się z konkretnymi strukturami amyloidowymi. Krokiem ku spersonalizowanej profilaktyce neuromedycznej przyszłości jest nowy barwnik, zaproponowany przez polsko-amerykańską grupę naukowców.

Od zaburzeń pamięci po cieszące się szczególnie złą sławą choroby Creutzfeldta-Jakoba czy Alzheimera – aż kilkadziesiąt chorób ma związek z formowaniem się w komórkach włókien amyloidowych, czyli złogów o skomplikowanych kształtach. Odkładają się one w wyniku niewłaściwego zwijania się białek, głównie białka znanego jako amyloid beta. Są podstawy by sądzić, że już wkrótce w laboratoriach medycznych pierwsze oznaki neurodegeneracji będzie można zidentyfikować na wcześniejszych etapach rozwoju choroby mózgu, a przy tym w sposób znacznie bardziej precyzyjny niż do tej pory. Nowe możliwości detekcyjne otwierają się dzięki osiągnięciom polsko-amerykańskiego zespołu, w którego skład weszli naukowcy z Instytutu Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) w Warszawie, Politechniki Wrocławskiej, University of Michigan i University of California, Santa Barbara.

Wraz ze starzeniem się społeczeństw rośnie znaczenie wczesnego wykrywania chorób neurodegeneracyjnych, z reguły objawiających się u osób w późnym wieku. Stawka jest niebagatelna, co widać choćby po danych dotyczących choroby Alzheimera. O ile wśród osób po 70. roku życia cierpi na nią 3% populacji, o tyle po 90. roku życia choruje już połowa populacji. Wiadomo jednak, że choroba ta prawdopodobnie zaczyna się nawet 20 lat przed wystąpieniem jej pierwszych objawów. W tej sytuacji wczesna i precyzyjna detekcja jej zwiastunów nabiera szczególnie istotnego znaczenia.

Zanim laborant obejrzy pobraną od pacjenta próbkę płynu rdzeniowo-mózgowego pod mikroskopem fluorescencyjnym, musi w jakiś sposób oznaczyć poszukiwane związki chemiczne za pomocą świecącego barwnika. Zwykle stosuje się w tym celu cząsteczki niewielkich rozmiarów, tak dobrane, by łączyły się tylko z tropionymi cząsteczkami. My udowodniliśmy, że jako barwnika można z powodzeniem użyć pochodnej politiofenu, kryjącej się pod oznaczeniem PTEBS. To polimer, czyli naprawdę spora struktura atomowa. W praktyce okazało się, że rozmiary cząsteczek PTEBS nie tylko nie są ich wadą, ale wręcz sporą zaletą – mówi dr inż. Piotr Hańczyc (IChF PAN, obecnie Wydział Fizyki Uniwersytetu Warszawskiego), pierwszy autor publikacji w czasopiśmie naukowym Journal of Luminescence.

Badania zespołu pozwoliły stwierdzić, że za pomocą barwnika PTEBS można rejestrować obecność zarówno poszukiwanych cząsteczek chemicznych, jak i ich agregatów, na dodatek nawet wtedy, gdy w próbce występują one w istotnie mniejszych stężeniach niż wykrywane przez tioflawinę T, obecnie jeden z najpopularniejszych barwników fluorescencyjnych, stosowanych do znakowania agregatów białkowych.

Kolejna ważna zaleta nowego barwnika jest związana z istnieniem form polimorficznych amyloidu, czyli z faktem, że podczas gdy jedna konfiguracja atomów w cząsteczce może odpowiadać za uruchomienie procesów neurodegeneracyjnych, inna okazuje się być niegroźna.

Standardowe barwniki to cząsteczki o małych rozmiarach. Nie można z nimi zbyt wiele zrobić, na dodatek są doskonale przebadane i wiele już o nich wiadomo. Cząsteczki naszego barwnika są duże, a do głównego łańcucha mają dołączone liczne grupy podstawnikowe. Grupy te można w szerokim zakresie modyfikować i rozbudowywać, zwiększając powinowactwo barwnika nie tylko do wybranej formy amyloidu, ale nawet do jego konkretnej odmiany polimorficznej. To daje naprawdę spore pole do popisu – podkreśla dr Hańczyc.

Nowy barwnik powinien pomóc m.in. w precyzyjniejszym niż dotychczas ustalaniu odmian polimorficznych odpowiedzialnych za przebieg procesów neurodegeneracjynych u pacjentów. Szczególnie obiecująco wyglądają jednak jego zastosowania w badaniach profilaktycznych. Pozwoliłyby one na dobieranie efektywniejszych strategii leczenia, spersonalizowanych pod kątem konkretnego pacjenta. Dzięki takiemu postępowaniu można byłoby znacząco opóźniać rozwój chorób neurodegeneracyjnych, a w dalszej przyszłości być może nawet całkowicie im zapobiegać.

Po stronie polskiej badania sfinansowano z grantu International Brain Research Organization (IBRO).


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Czy coś może łączyć zdrowe noworodki z osobami cierpiącymi na chorobę Alzhemera? Okazuje się, że tak. Jak donosi międzynarodowy zespół naukowy, u jednych i drugich występuje podniesiony poziom biomarkerów odpowiedzialnych za alzheimera. Mowa tutaj o fosforylowanym białku tau, a konkretnie o jego odmianie p-tau217. Jest ono od dawna wykorzystywane w testach diagnostycznych choroby Alzheimera. A noworodki mają go więcej niż cierpiący na alzheimera.
      Zwiększenie poziomu p-tau217 we krwi ma być oznaką odkładania się w mózgu białka β-amyloidowego w postaci blaszek amyloidowych. Oczywistym jest, że u noworodków takie patologiczne zmiany nie występują, zatem u nich zwiększenie p-tau217 musi być odzwierciedleniem innego, całkowicie zdrowego, procesu.
      Badacze ze Szwecji, Australii, Norwegii i Hiszpanii przeanalizowali próbki krwi ponad 400 osób. Były wśrod nich noworodki, wcześniaki, młodzi dorośli, starsi dorośli oraz osoby ze zdiagnozowaną chorobą Alzheimera. Okazało się, że najwyższy poziom p-tau217 występował u noworodków, a szczególnie u wcześniaków. W ciągu pierwszych miesięcy życia poziom ten spadał, aż w końcu stabilizował się na poziomie osób dorosłych.
      Wydaje się, że o ile u osób z chorobą Alzheimera zwiększony poziom p-tau217 powiązany jest z tworzeniem się splątków tau, które uszkadzają mózg, to wydaje się, że u noworodków wspomaga on zdrowy rozwój mózgu, wzrost neuronów i ich łączenie się z innymi neuronami. Badacze zauważyli też związek z terminem porodu, a poziomem p-tau217. Im wcześniej się dziecko urodziło, tym wyższy miało poziom tego biomarkera, co może sugerować, że wspomaga on gwałtowny rozwój mózgu w trudnych warunkach wcześniactwa.
      Najbardziej interesującym aspektem odkrycia jest przypuszczenie, że być może na początkowych etapach życia nasze mózgi mogą posiadać mechanizm chroniący przed szkodliwym wpływem białek tau. Jeśli zrozumiemy, jak ten mechanizm działa i dlaczego tracimy go z wiekiem, może uda się opracować nowe metody leczenia. Jeśli nauczymy się, w jaki sposób mózgi noworodków utrzymują tau w ryzach, być może będziemy w stanie naśladować ten proces, by spowolnić lub zatrzymać postępy choroby Alzheimera, mówi główny autor badań, Fernando Gonzalez-Ortiz.
      Źródło: The potential dual role of tau phosphorylation: plasma phosphorylated-tau217 in newborns and Alzheimer’s disease, https://academic.oup.com/braincomms/article/7/3/fcaf221/8158110

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańscy naukowcy odtworzyli recepturę, a raczej receptury, błękitu egipskiego. Ten najstarszy syntetyczny pigment był niezwykle ceniony w świecie starożytnym. Był używany jako zamiennik kosztownych materiałów jak turkus czy lapis lazuli i używany przez tysiące lat wykorzystywano go do malowania drewna, kamienia czy kartonażu. Do epoki oświecenia wiedza o jego wytwarzaniu zaginęła.
      W dokumentach, które przetrwały, nie znajdziemy dokładnego przepisu na jego wykonanie. Z pewnością jednak nie był to jeden przepis, którego trzymali się wszyscy starożytni producenci. Widzimy bowiem duże zróżnicowanie odcieni błękitu, które muszą wynikać z różnych składników, ich proporcji i metody wytwarzania.
      W ostatnich latach zainteresowanie błękitem egipskim wzrosło. Ma on bowiem interesujące właściwości optyczne, magnetyczne i biologiczne, dzięki którym potencjalnie można go wykorzystać w nowoczesnych technologiach. Barwnik emituje na przykład światło w zakresie podczerwieni, dzięki czemu można go użyć chociażby do zabezpieczeń. Jego skład chemiczny jest zaś podobny do składu chemicznego wysokotemperaturowych nadprzewodników.
      Smithsonian Institution i Carnegie Museum of Natural History poprosiły naukowców z Washington State University o pomoc w odtworzeniu błękitu egipskiego na potrzeby wystawy muzealnej. Uczeni postanowili wykorzystać okazję, by bliżej zająć się materiałem, który ostatnio cieszy się tak dużym zainteresowaniem.
      Chemicy, inżynierowie, mineralodzy i egiptolodzy stworzyli 12 różnych przepisów na błękit, w skład których wchodził tlenek krzemu, miedź, wapń i węglan sodu. Mieszaniny podgrzewali w temperaturach do 1000 stopni Celsjusza od 1 do 11 godzin, uwzględniają możliwości techniczne, jakimi dysponowali starożytni rzemieślnicy. Po chłodzeniu próbek w różnym tempie, uzyskany materiał był badany za pomocą nowoczesną nowoczesnych technik analitycznych i porównywali swoje materiały z próbkami pobranymi z dwóch różnych starożytnych egipskich artefaktów.
      Badacze zauważyli, że pigment jest w wysokim stopniu heterogeniczny, a duże różnice w odcieniu można uzyskać dzięki niewielkim różnicom w procesie wytwarzania. Najbardziej jednak zaskakujący był fakt, że najbardziej intensywny błękit uzyskiwano, gdy w całej mieszaninie niebieskie składniki stanowiły zaledwie około 50%. Nieważne, jaka była reszta składników. To nas naprawdę zaskoczyło. Okazało się, że każda cząstka pigmentu złożona była z całej gamy różnych składników, mówi główny autor badań, profesor John McCloy.
      Źródło: Assessment of process variability and color in synthesized and ancient Egyptian blue pigments

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
      Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
      Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
      Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
      Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
      Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
      Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
      Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W przebiegu chorób Alzheimera czy Parkinsona w neuronach tworzą się splątki neurofibrynalne, patologiczne agregacje białek. Dotychczas sądzono, że komórki mikrogleju sprzątają splątki dopiero wówczas, gdy zostaną uwolnione z komórki po śmierci neuronu. Badania przeprowadzone przez naukowców z Instytutu Biologii Wieku im. Maxa Plancka wykazały, że mikroglej tworzy niewielkie rurki połączone z komórkami nerwowymi i za pomocą tych rurek usuwa splątki, zanim wyrządzą one neuronowi szkodę.
      To jednak nie wszystko. Za pomocą rurek mikroglej wysyła do neuronów w których pojawiły się splątki, zdrowe mitochondria umożliwiające komórkom lepsze funkcjonowanie pomimo choroby. Jesteśmy podekscytowani tym odkryciem i jego potencjalnymi zastosowaniami w celu poprawy funkcjonowania neuronów za pomocą mikrogleju, mówi współautor badań Frederik Eikens.
      Uczeni odkryli też, że mutacje genetyczne w mikrogleju wpływają na tworzenie i działanie tych rurek. Mutacje takie zwiększają ryzyko wystąpienia chorób neurodegeneracyjnych, co sugeruje, że zaburzenia tworzenia „rurek tunelowania” jest jednym z czynników rozwoju chorób neurodegeneracyjnych. Na następnym etapie badań skupimy się na zrozumieniu, jak te rurki powstają i spróbujemy opracować metody zwiększenia procesu ich generowania w czasie choroby, dodaje Lena Wischhof.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowo odkryta struktura w mózgu może być zaangażowana w rozwój takich chorób jak stwardnienie rozsiane, choroba Alzheimera czy infekcje centralnego układu nerwowego, mówią naukowcy z Uniwersytetów w Rochester i Kopenhadze. Nowa warstwa oponowa, nazwana przez odkrywców SLYM (subarachnoidal lymphatic-like membrane) działa zarówno jak warstwa ochronna, jak i miejsce, z którego komórki układu odpornościowego monitorują mózg pod kątem infekcji i stanów zapalnych.
      Odkrycie nowej struktury anatomicznej, która oddziela i pomaga w przepływie płynu mózgowo-rdzeniowego do i wokół mózgu, pozwala nam w większym stopniu docenić rolę, jaką płyn ten odgrywa nie tylko w usuwaniu toksyn, ale również we wspieraniu ochrony immunologicznej, mówi doktor Maiken Nedergaard. W opublikowanym artykule naukowcy zauważają, że coraz więcej dowodów wskazuje, że płyn mózgowo-rdzeniowy działa jak układ kwazi-limfatyczny centralnego układu nerwowego. Dodają jednak, że mimo postępów technik obrazowania, wciąż nie wiemy dokładnie, jak płyn ten jest transportowany w mózgu.
      Autorzy badań skupili się na oponach mózgowo-rdzeniowych. Składają się one z trzech warstw: opony twardej, opony pajęczej oraz opony miękkiej. Badaliśmy, jak zorganizowany jest ruch płynu mózgowo-rdzeniowego i komórek układu odpornościowego w przestrzeni podpajęczynówkowej u myszy i ludzi, stwierdzają. Wtedy odkryli istnienie SLYM, która dzieli przestrzeń podpajęczynówkową. SLYM to mezotelium, błona, która otacza i chroni wiele organów wewnętrznych. Zawiera ona też komórki odpornościowe. Profesor Kjeld Møllgård, główny autor badań, wysunął hipotezę, że może się ona znajdować też w centralnym układzie nerwowym. A gdy ją teraz odkrył, wraz z zespołem postanowił odpowiedzieć na pytanie czy SLYM jest nieprzepuszczalną błoną rozdzielającą przestrzeń podpajęczynówkową.
      Szczegółowe analizy wykazały, że SLYM jest niezwykle cienka i delikatna, ma grubość od 1 do kilku komórek. Jest cieńsza od opony twardej. Uczeni wykorzystali techniki śledzenia molekuł o różnych rozmiarach i odkryli, że przez SLYM mogą się przedostać tylko bardzo małe molekuły. Wydaje się, że błona ta rozdziela „czysty” i „brudny” płyn mózgowo-rdzeniowy. SLYM rozdziela przestrzeń podpajęczynówkową na część górną oraz dolną dla roztworów z molekułami o masie ≥ 3 kDa (kilodaltonów). Innymi słowy SLYM ogranicza przepływ większość peptydów i protein – takich jak amyloid beta i tau – pomiędzy górną a dolną częścią przestrzeni podpajęczynówkowej, stwierdzają naukowcy.
      Badania sugerują, że SLYM odgrywa rolę w układzie glimfatycznym, który kontroluje przepływ płynu mózgowo-rdzeniowego, umożliwiając napływ „czystego” płynu i jednoczesne wymywanie toksyn z centralnego układu nerwowego. SLYM może odgrywać też ważną rolę ochronną. Centralny układ nerwowy posiada własną populację komórek odpornościowych i jest chroniony przed napływem z zewnątrz tego typu komórek. Ponadto wydaje się, że SLYM posiada własną populację komórek odpornościowych, skanujących płyn mózgowo-rdzeniowy pod kątem oznak infekcji.
      Odkrycie nowej błony otwiera drzwi do badań jej roli w chorobach mózgu. Naukowcy zauważyli, że w procesie starzenia się oraz w przypadku pojawienia się stanu zapalnego, na błonie tej dochodzi do nagromadzenie większej i bardziej zróżnicowanej populacji komórek odpornościowych. Wykazaliśmy, że w wyniku ostrego stanu zapalnego i w procesie naturalnego starzenia się dochodzi do znacznego wzrostu liczby i różnorodności komórek odpornościowych w SLYM. Natomiast fizyczne uszkodzenie SLYM może, poprzez zmianę wzorca przepływu płynu mózgowo-rdzeniowego, wyjaśniać zarówno wydłużony okres nieprawidłowego przepływu glimfatycznego, jak i zwiększone ryzyko rozwoju choroby Alzheimera w wyniku urazu, stwierdzają naukowcy.
      Badania sugerują, że nieprawidłowe funkcjonowanie SLYM może mieć wpływ na pojawienie się lub przebieg tak zróżnicowanych chorób jak stwardnienie rozsiane czy choroba Alzheimera.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...