Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Po kilku godzinach przegrzebki są pełne mikroplastiku

Rekomendowane odpowiedzi

Naukowcy z University of Plymouth postanowili sprawdzić, jak mikroplastik akumuluje się w organizmie przegrzebka zwyczajnego (Pecten maximus), zwierzęcia bardzo chętnie jedzonego przez ludzi.

Okazało się, że wystarczyło sześć godzin ekspozycji, by we wnętrznościach mięczaka znalazły się... miliardy fragmentów mikroplastiku wielkości około 250 nanometrów każdy. Jeszcze więcej 20-nanometrowych fragmentów plastiku przedostało się do jego nerek, skrzeli, mięśni i innych części ciała.

To pierwsze tego typu badania, podczas których zmierzono rzeczywisty poziom wchłaniania plastiku przez organizm morski podczas wystawienia go na działanie podobnej koncentracji mikroplastiku, z jaką może zetknąć się w rzeczywistości. Wcześniejsze tego typu badania prowadzono przy wyższej koncentracji mikroplastiku.

Stworzyliśmy nową metodologię na potrzeby tych badań. Wytworzyliśmy nanocząstki plastiku i oznaczyliśmy je, dzięki czemu mogliśmy śledzić ich ruch w ciele przegrzebka w środowisku odpowiadającym środowisku naturalnemu. Nasze badania po raz pierwszy pokazały, że nanocząstki plastiku mogą być bardzo szybko wchłaniane przez organizmy morskie i w ciągu kilku godzin trafić do większości głównych organów, mówi doktor Maya Al Sid Cheikh, która stała na czele grupy badawczej.

To przełomowe badanie zarówno jeśli chodzi o metodologię jak i uzyskane wyniki. Jedynie na kilka godzin wystawiliśmy przegrzebka na działanie mikroplastiku i, mimo tego, że później trafiły do czystej wody, to mikroplastik był obecny w ich organizmach wiele tygodni później. Jeśli chcemy zrozumieć wpływ mikroplastiku na organizmy żywe, musimy znać dynamikę jego wchłaniania i usuwania, mówi profesor Richard Thompson.

Badania wykazały, że po 14 dniach od ekspozycji na mikroplastik w ciele przegrzebków nie można było już wykryć cząstek o średnicy wynoszącej 20 nanometrów. Cząstki 250-nanometrowe znikały dopiero po 48 dniach.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badacze z USA poinformowali na łamach PLOS ONE o wykryciu mikroplastiku w... powietrzu wydychanym przez dziko żyjące delfiny butlonose. To sugeruje, że oddychanie może być znaczącą drogą przedostawania się mikroplastiku do organizmów zwierząt. W tej chwili nie wiemy, czy szkodzi on delfinom. Z badań na ludziach i gryzoniach wynika, że niewielkie fragmenty plastiku przedostające się do organizmu wywołują stres oksydacyjny i stany zapalne. U ludzi oddychanie powietrzem zawierającym mikroplastik powiązano z niekorzystnym wpływem na zdrowie.
      Dotychczas jednak prowadzono niewiele badań nad wpływem mikroplastiku na zdrowie dzikich zwierząt. W przypadku delfinów wiemy, że plastik trafia do ich układów trawiennych. Uczeni z USA przeprowadzili teraz pierwsze badania na obecność mikroplastiku w wydychanym przez nie powietrzu. Były one prowadzone przy okazji szerszych badań nad zdrowiem zwierząt. Naukowcy zebrali powietrze wydychane przez 5 delfinów z Sarasota Bay na Florydzie i 6 zwierząt żyjących w Barataria Bay w Luizjanie.
      Analizy wykazały, że w powietrzu uwolnionym z organizmu przez każde ze zwierząt znajdował się co najmniej 1 fragment mikroplastiku. Podczas szczegółowych badań znalezionych fragmentów zidentyfikowano liczne rodzaje tworzyw sztucznych, takie jak poli(tereftalan etylenu) (PET), poliester, poliamid, poli(tereftalan butylenu) oraz poli(metakrylan metylu). To na razie wstępne badania i konieczne są kolejne, które pozwolą lepiej ocenić poziom ekspozycji delfinów na mikroplastik w powietrzu oraz stwierdzić, czy może on być – na przykład przez uszkodzenie płuc – szkodliwy dla zwierząt.
      Delfiny mają duże płuca i biorą naprawdę głębokie oddechy, mikroplastik może więc trafiać głęboko do ich organizmów. Obecnie nikt nie potrafi odpowiedzieć na pytanie, czy i jakie szkody może poczynić.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rosnący popyt na metale i minerały powoduje, że zagrożone jest istnienie ponad 4000 gatunków kręgowców. Problem staje się coraz większy z powodu zwiększającego się wydobycia minerałów potrzebnych do budowy systemów czystej energii. Minerały takie często bowiem znajdują się w miejscach o dużej różnorodności biologicznej. Naukowcy z Uniwersytetów w Sheffield i Cambridge informują na łamach Current Biology, że górnictwo oraz wydobycie ropy i gazu zagrażają 4642 gatunkom kręgowców.
      Największe ryzyko stwarza wydobycie materiałów potrzebnych do przejścia na czystą energię, takich jak lit i kobalt. Wiele gatunków jest też narażonych przez kamieniołomy, w których wydobywa się wapień, niezbędny do produkcji cementu. A zagrożenie dla zwierząt nie ogranicza się wyłącznie do miejsc wydobycia. Zagrożone są też gatunki zamieszkujące bardzo daleko od miejsc prowadzenia działalności wydobywczej. Górnictwo zanieczyszcza bowiem wody, a budowa kopalń – czy to wydobywających minerały czy ropę naftową lub gaz – bardzo często związana jest z wycinką lasów zarówno w miejscu samej kopalni, jak i dróg dojazdowych i innej niezbędnej infrastruktury.
      Autorzy badań zwracają uwagę, że bardzo szybkim i łatwym sposobem na zmniejszenie negatywnego wpływu kopalń na kręgowce jest skupienie się na zmniejszeniu zanieczyszczeń generowanych przez takie zakłady.
      Nie jesteśmy w stanie przestawić się na czystą energię i zmniejszyć naszego wpływu na klimat bez wydobywania potrzebnym materiałów. I tutaj pojawia się problem, gdyż często prowadzimy działalność górniczą w miejscach o dużej bioróżnorodności. Bardzo wiele gatunków, szczególnie ryb, jest narażonych z powodu zanieczyszczenia wód przez górnictwo. Łatwo możemy zapobiegać tego typu zanieczyszczeniom i w ten sposób zmniejszyć negatywny wpływa górnictwa na bioróżnorodność, stwierdza profesor David Edwards z University of Cambridge.
      Z badań wynika, że najbardziej narażone są właśnie ryby. Górnictwo zagraża aż 2053 gatunkom tych zwierząt. Kolejnymi na liście zagrożonych są gady, płazy, ptaki i ssaki. Wszystko wskazuje na to, że największe niebezpieczeństwo wisi nad gatunkami żyjącymi w wodach słodkich oraz na tymi o małym zasięgu występowania.
      Zapotrzebowanie na wapień, podstawowy składnik naszej działalności budowlanej, to poważne zagrożenie dla dzikich zwierząt. Bardzo wiele gatunków żyje w miejscach, gdzie istnieją kamieniołomy, gdyż są wyspecjalizowane w życiu na terenach występowania wapienia. Tymczasem kopalnia może dosłownie unicestwić wzgórze będące domem dla różnych gatunków, dodaje główny autor badań Ieuan Lamb z University of Sheffield. Uczony podaje przykład jaszczurki Cyrtodactylus hidupselamanya. To gatunek endemiczny dla Malezji, ściśle związany ze skałami wapiennymi. Występuje on na jednym wzgórzu i chroni w jego szczelinach oraz jaskiniach. Niestety, istnieją plany zniszczenia wzgórza w celu pozyskania wapienia. To zaś będzie oznaczało zagładę całego gatunku.
      Kopalnie mogą negatywnie wpływać na cieki wodne na powierzchni setek tysięcy kilometrów kwadratowych. Wpływ ten może być bardzo różny. Na przykład wydobycie piasku powoduje, że dochodzi do zmian we wzorcach przepływu wody w rzekach i na mokradłach, przez co wiele gatunków ptaków staje się łatwiej dostępnych dla drapieżników. Górnictwo zagraża zwierzętom w bardzo ważnych centrach bioróżnorodności w tropikalnych Andach, Afryce Centralnej i Zachodniej czy Azji Południowo-Wschodniej. I nie musi to być działalność prowadzona na wielką skalę przemysłową. Na przykład prowadzone na niewielką skalę ręczne wydobycie złota z osadów rzecznych w Ghanie powoduje zanieczyszczenie rtęcią ważnych miejsc występowania ptaków.
      Autorzy badań skupili się na zagrożeniach dla kręgowców, jednak przypuszczają, że działalność górnicza zagraża również bezkręgowcom i roślinom.
      Nie ma wątpliwości, że musimy wydobywać potrzebne nam materiały. Wszystkie społeczeństwa się na tym opierają. Jednak wiążą się z tym zagrożenia środowiskowe. Nasz raport to pierwszy krok w kierunku uniknięcia utraty bioróżnorodności w obliczu przewidywanego drastycznego zwiększenia działalności górniczej, mówi Edwards.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W niektórych miejscach Europy poziom radioaktywnego cezu w mięsie dzików jest tak wysoki, że ich mięsa nie wolno przeznaczać do konsumpcji dla człowieka. Co gorsza, ten wysoki poziom utrzymuje się od 30 lat, mimo że z zarówno nasza wiedza na temat cezu oraz badania innych zwierząt leśnych wskazują, że powinien on spadać. Problem znany jest jako paradoks dzika i został on szczegółowo opisany przez naukowców z Uniwersytetu Leibniza w Hanowerze i Uniwersytetu Technicznego w Wiedniu.
      Uczeni przyjrzeli się dzikom żyjącym w Bawarii. Poziom cezu w ich mięsie wynosi od 370 do 15 000 Bq/kg (bekereli na kilogram). Przepisy dopuszczają poziom radioaktywności rzędu 600 Bq/kg, zatem normy w mięsie dzików są przekroczone nawet 25-krotnie. Badacze porównali stosunek izotopów cezu 135 i 137 w mięsie dzików z Bawarii i stwierdzili, że za zanieczyszczenie odpowiedzialne są z w znacznej mierze... testy broni jądrowej. To zaskakujące stwierdzenie, gdyż dotychczas sądzono, iż głównym źródłem zanieczyszczeń jest opad radioaktywny pochodzący z Czernobyla. Tymczasem okazało się, że to testy sprzed 60 lat odpowiadają za od 10 do 68 procent radioaktywności mięsa przekraczającego normy, a w niektórych przypadkach to sam opad z testów broni jądrowej wystarczył, by normy zostały przekroczone. W sumie aż 25% zbadanych próbek mięsa zawierało tak dużo radioaktywnego cezu pochodzącego z prób broni jądrowej, że normy w nich byłyby przekroczone nawet wówczas, gdyby nie doszło do katastrofy w Czarnobylu.
      Po wypadku w Czarnobylu poziom zanieczyszczenia gleby w Bawarii znacząco wzrósł, a zanieczyszczenie mięsa dzików nawet o 2 rzędy wielkości przekraczało normy. Mięso innych dzikich zwierząt, jak jeleni, również było zanieczyszczone, ale u nich poziom radioaktywności znacząco spada. U dzików tak szybkiego spadku nie zauważono, co więcej, był on wolniejszy niż tempo półrozpadu cezu.
      Zdaniem naukowców poziom radioaktywnego cezu w mięsie dzików nie spada, gdyż zwierzęta te ryją w ziemi i żywią się m.in. podziemnymi grzybami, które w odpowiednich warunkach mogą akumulować cez. Cez – zarówno ten z testów broni jądrowej, jak i z katastrofy w Czernobylu – wciąż trafia z gleby do pożywienia dzików.
      Również w Polsce mięso dzikich zwierząt zanieczyszczone jest pierwiastkami radioaktywnymi. W naszym kraju regionem o szczególnie dużym poziomie zanieczyszczeń jest region Opola. Po raz pierwszy udowodniliśmy, że rejonie tym, w którym występuje najwyższy poziom promieniowania gamma w Polsce, aktywność cezu-137 w tkance mięśniowej wszystkich trzech badanych gatunków rośnie w czasie, piszą autorzy badań przeprowadzonych w 2022 roku. Badane przez nich gatunki to dzik, sarna europejska i jeleń szlachetny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tworzywa sztuczne to jedno z największych zagrożeń dla środowiska naturalnego. Tymczasem recykling plastiku to wielka porażka. Ludzkość poddaje recyklingowi jedynie 9% wytwarzanego przez siebie plastiku. Jakby tego było mało, autorzy najnowszych badań informują, że techniki wykorzystywane w przetwórstwie tworzyw sztucznych... zwiększają zanieczyszczenie środowiska mikroplastikiem. Do takich wniosków doszli naukowcy z University of Strathclyde w Szkocji i Dalhousie University w Kanadzie, którzy badali wodę wykorzystywaną do czyszczenia plastiku w zakładach przetwórstwa.
      Globalna produkcja plastiku szybko rośnie. Tylko w latach 2018–2020 zwiększyła się ona z 359 do 367 milionów ton rocznie. Miliony ludzi na całym świecie segregują plastik we własnych domach. W znacznej części i tak trafia on jednak na wysypisko. A teraz dowiadujemy się, że ta niewielka część, która poddawana jest recyklingowi, sprawia jeszcze większe problemy. Wynikają one z tego, że plastik przed recyklingiem należy wymyć. Później tworzywo jest mielone i przetapiane na pelet.
      Szkocko-kanadyjski zespół naukowy przyjrzał się procesowi recyklingu plastiku w supernowoczesnym zakładzie przetwórstwa w Wielkiej Brytanii, który co roku przyjmuje 22 680 ton zmieszanych odpadów z tworzyw sztucznych. Plastikowe odpady są myte w zakładzie czterokrotnie. Uczeni przyjrzeli się więc wodzie po każdym z tych cykli mycia, badając, ile pozostaje w niej mikroplastiku.
      Okazało się, że mikroplastik obecny był w wodzie po każdym cyklu mycia. W badanym zakładzie, przez pewien czas po rozpoczęciu pracy, nie było systemu filtrowania wody spuszczanej do kanalizacji ściekowej. Dlatego też naukowcy mogli zbadać efektywność systemu filtrującego oraz dać nam wyobrażenie, jak bardzo zanieczyszczają środowisko zakłady wyposażone w w filtry oraz ich nie posiadające.
      Okazało się, że filtry o około 50% zmniejszały zawartość mikroplastiku w wodzie. Mimo to z szacunków wynika, że nawet po pełnym cyklu filtrowania do środowiska może trafiać tylko z tego badanego zakładu od 4 do 1366 ton mikroplastiku rocznie, a zatem do 5% przetwarzanej masy. Co gorsza, filtry dość skutecznie wyłapują większe kawałki mikroplastiku, słabo zaś radzą sobie z tymi najmniejszymi. A to one z największą łatwością przenikają w głąb organizmów żywych.
      Mikroplastik wykryto już w ludzkich jelitach, krwi, naczyniach krwionośnych, płucach, łożysku i mleku matki. Znaleziono go w każdej tkance ludzkiego organizmu, w jakiej go poszukiwano. Nie znamy zagrożeń, jakie dla człowieka niesie zanieczyszczenie organizmu plastikiem. Nie jest on jednak obojętny. Ostatnio naukowcy opisali nową jednostkę chorobową u ptaków – plastikozę. Nie ma więc gwarancji, że i u ludzi mikroplastik nie wywołuje chorób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Glony Malosira arctica, które żyją pod lodem Arktyki, zawierają 10-krotnie więcej mikroplastiku niż otaczające je wody. Koncentracja plastiku na początku łańcucha pokarmowego to bardzo zła informacja. Może on zagrażać stworzeniom, które żyją się glonami i wędrować w górę łańcucha pokarmowego. Ponadto gromady martwych glonów bardzo szybko transportują plastik na dno morskie, co może wyjaśniać wysoką koncentrację mikroplastiku w osadach.
      Wiosną i latem Melosira arctica bardzo szybko się rozrasta, tworząc metrowej długości łańcuchy. Gdy giną, a lód nad nimi się roztapia, glony w ciągu zaledwie jednego dnia opadają na dno położone tysiące metrów poniżej. Są niezwykle ważnym źródłem pożywienia dla mieszkających tam zwierząt i bakterii. Jednak, jak się okazuje, niosą ze sobą duże ilości plastiku.
      W końcu znaleźliśmy prawdopodobne wyjaśnienie dlaczego największa koncentracja mikroplastiku na tym obszarze występuje na krawędziach pól lodowych, nawet w osadach dennych, mówi doktor Melanie Bargmann z Instytutu Badań Morskich i Polarnych im Alfreda Wegenera (AWI). Z wcześniejszych badań naukowcy wiedzieli jedynie, że mikroplastik gromadzi się w lodzie, z którego jest uwalniany, gdy ten topnieje. Tempo, z jakim glony opadają na dno, wskazuje, że wędrują niemal po linii prostej. Tworzący lód śnieg opada wolniej, jest przemieszczany przez prądy, więc pochodzący zeń plastik opada na dno dalej. Teraz, wiedząc, że mikroplastik przemieszcza się na dno wraz z martwymi Malosira, wiemy, dlaczego pod lodem koncentracja plastiku jest większa, dodaje uczona.
      Naukowców z AWI, Ocean Frontier Institute, Dalhousie University i University of Canterbury zaskoczyła olbrzymia ilość mikroplastiku w glonach. Okazało się, że zawierają one średnio 31 000 ± 19 000 fragmentów mikroplastiku na każdy metr sześcienny. To dziesięciokrotnie więcej niż otaczające je wody. Nagromadzenia glonów mają śluzowatą, kleistą powierzchnię. Prawdopodobnie to przez nią gromadzą mikroplastik z powietrza, wody, lodu i innych źródeł. Gdy już glony przechwycą mikroplastik, albo przetransportują go na dno, albo zostanie on wraz z nimi zjedzony jeszcze na powierzchni, dodaje Deonie Allen z University of Canterbury.
      Z glonów mikroplastik trafia do żywiącego się nimi zooplanktonu, stamtąd zaś do organizmów ryb, następnie ludzi czy niedźwiedzi polarnych. Szczegółowe analizy wykazały, że w arktycznych glonach znajduje się polietylen, polistyren, nylon, akryl i inne rodzaje plastików. Zawierają one barwniki, plastyfikatory, środki opóźniające palenie się oraz olbrzymią ilość innych substancji chemicznych, a ich łączny wpływ na środowisko i organizmy żywe trudno jest ocenić. Mikroplastik wykryto już w ludzkich jelitach, krwi, naczyniach krwionośnych, płucach, łożysku i mleku matki. Wiemy, że może wywoływać reakcje zapalne, ale jego całkowity wpływ na zdrowie nie został jeszcze dobrze poznany, dodaje Bergmann. A Steve Allen z Dalhousie University przypomina, że mikroplastik znaleziono w każdym fragmencie ludzkiego ciała, w którym go poszukiwano. U zanieczyszczonych nim organizmów obserwowano zmiany zachowania, zaburzenia wzrostu, płodności i zwiększenie śmiertelności.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...