Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pierwszy samolot z napędem bez ruchomych części

Recommended Posts

Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.

To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.

Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.

Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.

Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.

Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po badaniach na agamach brodatych (Pogona vitticeps), które jadły seler, naukowcy doszli do wniosku, że pokarmy ujemne kalorycznie to mit.
      Niektóre bogate w błonnik produkty, np. seler, grejpfrut czy brokuły, mają wg niektórych, dostarczać mniej kalorii, niż jest to konieczne do ich strawienia i absorpcji. Podczas eksperymentów okazało się jednak, że netto po spożyciu selera jaszczurkom zostawało ok. 24% kalorii.
      Zespół prof. Stephena Secora z Uniwersytetu Alabamy dodaje, że choć technicznie seler nie jest produktem ujemnym energetycznie, przez niską kaloryczność nadal może pomóc w odchudzaniu.
      Posiłek z selera nie zaspokoi zapotrzebowania energetycznego na długo, dlatego wg autorów publikacji z pisma bioRxiv, lepiej go nazywać pokarmem ujemnego budżetu energetycznego (tyczy się to również innych wymienianych w tym kontekście produktów, czyli grejpfrutów itp.).
      Akademicy wyjaśniają, że choć agamom daleko ewolucyjnie do ludzi, trochę nas jednak łączy. Podobnie jak my, jaszczurki te są wszystkożerne, a ich układ pokarmowy i procesy trawienne są podobne jak u ssaków.
      U jaszczurek, które w postaci poszatkowanego selera spożyły odpowiednik 5% masy swojego ciała, Katherine Buddemeyer mierzyła poposiłkowy wskaźnik metaboliczny oraz efekt termogeniczny SDA (od ang. specific dynamic action). Amerykanie ustalali, ile kalorii zwierzęta zużywają na strawienie i wchłonięcie posiłku z selera. Poza tym wyliczyli, ile kalorii tracą z moczem i kałem.
      Okazało się, że jaszczurki zużywały 33% kalorii na trawienie i wydalały ok. 43%. Zostawało im więc ok. 24% kalorii.
      Choć badanie dotyczyło tylko jednego rodzaju produktu u jednego gatunku zwierzęcia, akademicy poczynili kilka założeń, by oszacować uzysk (stratę) energii netto, który mogłyby wystąpić u ludzi spożywających 10 najczęściej przywoływanych "ujemnych kalorycznie" produktów. Oprócz selera, uwzględniono brokuły, jabłka, pomidory, marchew, grejpfruty, ogórki, arbuzy, sałatę i borówki.
      Jeśli założymy, że w przypadku 60-kg kobiety rozszerzony o koszt żucia SDA stanowi równoważnik 25% wartości energetycznej posiłku i że traci ona 5% kalorii z moczem i 30% energii włókien z kałem, posiłek z selera odpowiadający 5% masy jej ciała (3 kg) zaspokoi tylko nieco poniżej 6 godzin metabolizmu spoczynkowego (przy założeniu, że wynosi on 220 kJ/h). Jeśli jest aktywna, wystarczy tylko na circa 3 godz.
      Amerykanie wyliczyli, że do zasilania dziennego metabolizmu spoczynkowego, uwzględniając straty w wyniku SDA, a także z moczem i kałem, potrzeba by 12,6 kg (9100 kJ) surowego selera albo 9 kg pomidorów czy 4,3 kg marchwi. Trudno zaś sobie wyobrazić, by ktoś porwał się na taką dietę...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując dane z 31 badań, naukowcy ustalili, że cukier wcale nie wpływa korzystnie na nastrój. Wręcz przeciwnie, w ciągu godziny od spożycia nasila zmęczenie i obniża czujność.
      Przyglądając się wpływowi cukru na różne aspekty nastroju, np. depresję, złość, zmęczenie i czujność, brytyjsko-niemiecki zespół posłużył się 31 badaniami; w sumie objęły one prawie 1300 dorosłych.
      Autorzy raportu z pisma Neuroscience & Biobehavioral Reviews oceniali także, jak na nastrój wpływają takie czynniki, jak ilość i rodzaj spożytego cukru. Ciekawiło ich również, czy angażowanie się w wymagającą czynność umysłową czy fizyczną robi jakąś różnicę.
      Okazało się, że bez względu na to, ile cukru się spożywa i czy ludzie angażują się po jedzeniu w wymagające czynności, cukier nie poprawia żadnego aspektu nastroju, a nawet może go pogorszyć. Ludzie, którzy go jedli, czuli się bowiem bardziej zmęczeni i byli mniej czujni. Wszystko wskazuje więc na to, że "sugar rush" (cukrowy kop) to niepoparty dowodami mit.
      Idea, że cukier może poprawiać nastrój, jest rozpowszechniona w popkulturze do tego stopnia, że ludzie na całym świecie spożywają słodkie napoje, by zwiększyć czujność bądź zwalczyć zmęczenie. Nasze badania pokazują, że takie twierdzenia są nieuzasadnione - jeśli w ogóle cokolwiek się stanie, będzie to raczej zmiana na gorsze - podkreśla dr Konstantinos Mantantzis z Uniwersytetu Humboldtów w Berlinie.
      Wzrost częstości występowania otyłości, cukrzycy i zespołu metabolicznego w ostatnich latach uwypukla potrzebę opracowania bazujących na dowodach strategii dietetycznych, które będą promować zdrowe zachowania na przestrzeni całego życia. Nasze badania pokazują, że słodkie napoje czy przekąski nie są metodą na szybkie doładowanie akumulatorów [...] - podsumowuje dr Sandra Sünram-Lea z Uniwersytetu w Lancaster.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stworzony na MIT robot Cheetah 3 potrafi skakać i biegać po nierównym terenie, chodzić po schodach, na których ustawiono przeszkody oraz szybko odzyskać równowagę, gdy ją straci. A wszystko to bez systemu wizyjnego.
      Urządzenie waży nieco ponad 40 kilogramów i jest wielkości dorosłego labradora. Jego twórcy nie wyposażyli go w żadne kamery ani innego typu czujniki pozwalające „widzieć” otoczenie. Robot porusza się mniej więcej tak, jak człowiek w całkowicie ciemnym pokoju. Musi dotykiem wyczuwać otoczenie.
      Istnieje bardzo dużo niespodziewanych sytuacji, w których robot powinien sobie poradzić bez zbytnego polegania na wizji. Obraz może wprowadzać dużo szumu, może być nieco niedokładny, a czasem po prostu niedostępny. Jeśli chcesz polegać na systemie wizyjnym, to robot musi niezwykle precyzyjnie się pozycjonować i będzie powolny. My chcemy, by nasz robot polegał na wrażeniach dotykowych. Dzięki temu poradzi sobie z przeszkodami podczas szybkiego przemieszczania się, mówi profesor Sangbae Kim, twórca Cheetaha.
      Kim przewiduje, że w ciągu kilku najbliższych lat roboty będą wykonywały zadania zbyt niebezpieczne dla ludzi. Cheetah 3 został zaprojektowany z myślą o wykonywaniu takich zadań jak inspekcje elektrowni, co wymaga poruszania się po różnym terenie, w tym po schodach, przechodzenia przez krawężniki czy radzeniu sobie z przeszkodami. Istnieje wiele prostych zadań, do wykonania których możemy wysłać roboty zamiast ludzi. Niebezpieczne, brudne czy trudne prace można bardziej bezpiecznie wykonać za pośrednictwem zdalnie sterowanego robota, stwierdza uczony.
      Sterujący Cheetahem 3 algorytm bez przerwy oblicza dla każdej z nóg trzy prawdopodobieństwa: prawdopodobieństwo kontaktu nogi z gruntem, prawdopodobieństwo oddziaływania siły wskutek takiego kontaktu oraz prawdopodobieństwo poślizgu.
      Prawdopodobieństwa te są wyliczane na podstawie danych z akcelerometrów, żyroskopów i pozycji stawów w nogach urządzenia, z których dostarczane są informacje o kącie i wysokości nad gruntem.
      Jeśli na przykład robot nastąpi na przeszkodę, która obsunie mu się spod nogi, jego pozycja ulegnie gwałtownej zmianie, dane dostaną dostarczone do algorytmu, który dla każdej z nóg wyliczy odpowiednie działanie pozwalające na odzyskanie równowagi. Algorytm sterujący został przetestowany w laboratorium i na zbudowanych tam schodach. Robot nie znał wysokości schodów ani rozkładu przeszkód. Musiał sobie radzić z nimi tak, jak radziłby sobie człowiek idący z zamkniętymi oczami.
      Algorytm podejmując decyzje co do wymaganych działań usiłuje przewidzieć, jaki skutek działania te będą miały pół sekundy później. Wyobraźmy sobie, że ktoś kopnie robota z boku. Gdy dana noga robota ma kontakt z gruntem, algorytm musi zdecydować, z jaką siłą trzeba oddziaływać na grunt w sytuacji, gdy z lewej strony niespodziewanie przyłożono dodatkową siłę. Dojdzie do wniosku, że należy przyłożyć siłę ze strony przeciwnej. Musi jeszcze obliczyć siłę, którą trzeba przyłożyć oraz przewidzieć, jaki będzie to miało skutek pół sekundy później, wyjaśnia Kim. Tego typu obliczenia wykonywane są dla każdej nóg co 50 milisekund, zatem 20 razy na sekundę.
      Cheetah 3 został też właśnie wyposażony w kamery, które dają mu ogólny obraz otoczenia i pozwalają wcześniej zauważyć ściany czy drzwi. Jednak głównym celem jest udoskonalenie nawigacji bez systemu wizyjnego.
      Chcemy, by bardzo dobrze potrafił się kontrolować bez posiadania obrazu otoczenia. A gdy dodamy wizję, to – nawet gdy z kamer dostanie niewłaściwe informacje – jego nogi powinny poradzić sobie z przeszkodami. Co się bowiem wydarzy, gdy nadepnie na coś, czego kamera nie zauważyła? Co robot zrobi? To właśnie w takich przypadkach musi działać lokomocja bez systemu wizyjnego. Nie chcemy polegać zbytnio na obrazie.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prowadzone przez trzy lata badania wskazują, że w obecnie obowiązujących modelach klimatycznych trzeba będzie zmienić dane dotyczące emisji metanu z wód Oceanu Arktycznego. Okazuje się bowiem, że uwalniają one „znaczące ilości" tego gazu.
      Badania prowadzono za pomocą specjalnie wyposażonego samolotu, który odbył serię lotów pomiędzy biegunami. Jego zadaniem było mierzenie koncentracji gazów cieplarnianych oraz sadzy na różnych wysokościach, w różnych miejscach i o różnych porach roku.
      Program miał pozwolić na stworzenie przekrojowego modelu atmosfery. Znaleźliśmy coś, czego wcześniej nie podejrzewaliśmy - mówi profesor Steven Wofsy z Uniwersytetu Harvarda.
      Do pomiarów koncentracji gazów w pobliżu powierzchni Ziemi tradycyjnie wykorzystywano stacje naziemne ulokowane np. w górach. W ostatnich czasach do pracy zaprzęgnięto też satelity, które potrafią mierzyć koncentrację dwutlenku węgla. Jednak wykorzystanie samolotu daje znacznie lepszy obraz i pozwala badać to, co dzieje się na wysokościach od 150 do ponad 14 000 metrów. To tak, jakby porównywać zdjęcie rentgenowskie z lat 60. ubiegłego wieku ze współczesną tomografią komputerową - mówi Wofsy.
      Zdaniem naukowca pełne opracowanie zdobytych danych zajmie wiele lat, ale już teraz naukowcy dowiedzieli się wielu zaskakujących rzeczy. Między innymi tego, że z wód Oceanu Arktycznego uwalniane są duże ilości metanu. Nie wiadomo, skąd ten metan pochodzi, jednak wstępne dane pokazują, że jest go na tyle dużo, iż może mieć to znaczenie w skali całej planety.
      Drugi z głównych uczestników badań, Britton Stephens, zwraca uwagę na zebrane podczas projektu HIPPO dane dotyczące cyklu tlenu i dwutlenku węgla. Połowa emitowanego przez nas dwutlenku węgla jest pochłaniana przez rośliny lądowe oraz oceany. Jeśli zatem chcemy przewidywać zmiany klimatyczne, to największą niewiadomą jest tutaj to, co zrobią ludzie. Drugą największą niewiadomą jest, jak zachowają się rośliny i oceany - mówi Stephens.
    • By KopalniaWiedzy.pl
      Większość z nas, słysząc o wpływie lotnictwa na klimat, pomyśli zapewne o emisji węgla, tym bardziej, że samoloty spalają olbrzymie ilości paliwa. Tymczasem, jak dowiadujemy się z nowo powstałego pisma Nature Climate Change, chmury tworzone obecnie przez samoloty, mają większy wpływ na klimat niż cała historyczna emisja produktów spalania paliwa lotniczego.
      Autorzy artykułu informują, że wydzielanie węgla przez silniki to tylko jeden z wielu sposobów, w jaki samoloty wpływają na klimat. Istotny jest też fakt, że emisja ma miejsce wysoko nad Ziemią, że wydzielane są też tlenki azotu, jednak najbardziej znaczący jest udział samolotów w tworzeniu się chmur.
      Obserwując lecący samolot, widzimy ciągnący się za nim ślad, smugę kondensacyjną. To nic innego jak chmura typu cirroculumus zbudowana z kryształków lodu. Z czasem kształt takich smug się zmienia tak, że są nie do odróżnienia od naturalnie powstałych cirrocumulusów.
      Chmury tworzące się nisko nad Ziemią, ochładzają planetę, zatrzymując promienie Słońca. Jednak te, które powstają wysoko, właśnie tam, gdzie latają samoloty, przyczyniają się do ogrzania Ziemi, gdyż utrudniają ucieczkę ciepła oddawanego przez planetę.
      Naukowcy, postanowili sprawdzić, w jaki sposób sztucznie powstające cirrocumulusy wpływają na klimat. Zidentyfikowali „gorące miejsca", w których panuje szczególnie duży ruch lotniczy, czyli USA, Europę i korytarz nad północnym Atlantykiem łączący Stary Kontynent z Ameryką Północną oraz Wschodnią Azję i północny Pacyfik. Ponadto miejscem dużej kumulacji sztucznych chmur jest centralna Europa, gdyż napływa tutaj powietrze z północnoatlantyckiego korytarza. Dane z takich miejsc nałożono na model klimatyczny ECHAM4. Z wyliczeń wynika, że średnio w skali globalnej cirrusy tworzone przez samoloty przyczyniają się do zwiększenia energii otrzymywanej przez powierzchnę planety o około 40 miliwatów na metr kwadratowy. Wziąwszy pod uwagę fakt, że sztuczne cirrusy ograniczają powstawanie naturalnych chmur, wpływ ten oszacowano na około 30 miliwatów na m2. Dla porównania w czasie cyklu słonecznego ilość energii docierającej do Ziemi zmienia się w granicach 1 wata na metr kwadratowy.
      Niezależnie jednak od faktu, że formowanie się chmur jest najpoważniejszym przykładem wpływu lotnictwa na klimat, pocieszające jest, że chmury istnieją zaledwie kilka dni, nie niosą zatem ze sobą długotrwałych skutków.
×
×
  • Create New...