Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Bioniczna pieczarka łączy nanotechnologię, bakterie i grzyby
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Woda w zbiornikach w Tikal, jednym z najpotężniejszych i najważniejszych miast Majów, była tak zanieczyszczona rtęcią i sinicami, że nie nadawała się do picia. Do takich wniosków doszli naukowcy z University of Cincinnati, którzy stwierdzili toksyczny poziom zanieczyszczeń w czterech głównych zbiornikach wody w Tikal.
Przekształcenie się centralnych zbiorników w Tikal z miejsc podtrzymujących życie w miejsca powodujące choroby, mogło w sferze i praktycznej i symbolicznej wspomóc decyzję o opuszczeniu tego wspaniałego miasta, stwierdzili autorzy badań.
Analiza geochemiczna przeprowadzona w dwóch zbiornikach najbliżej miejskiego pałacu i centralnej świątyni wykazała obecność toksycznego poziomu rtęci. Z badan wynika, że rtęć ta pochodziła z pigmentu, którym Majowie dekorowali budynki, naczynia gliniane i inne przedmioty. Podczas deszczów rtęć z pigmentów była wymywana i przed lata gromadziła się w osadach na dnie zbiorników.
Naukowcy z UC analizowali osady datowane aż do IX wieku naszej ery, kiedy Tikal było jeszcze kwitnącym miastem u szczytu potęgi. Przyczyny, dla których Majowie nagle porzucili swoje miasto stanowią od ponad 100 lat zagadkę. Tym bardziej, że jeszcze w ubiegłym roku podczas innych badań naukowcy z tej samej uczelni stwierdzili, że ziemie wokół Tikal były w IX wieku wyjątkowo żyzne, a swoją jakość zawdzięczały erupcjom wulkanicznym.
Na potrzeby najnowszych badań naukowcy przeanalizowali osady z 10 zbiorników na terenie Tikal. W czterech z nich znaleziono ślady DNA.
Osady ze zbiorników najbliżej pałacu i świątyni znaleziono ślady cyjanobakterii. Picie wody z tych zbiorników groziło zatruciem, nawet jeśli woda została przegotowana, mówi profesor David Lentz. Odkryliśmy dwa typy cyjanobakterii, które wytwarzają toksyczne związki chemiczne. Zła wiadomość jest taka, że są one odporne na gotowanie. To zaś powodowało, że woda w tych zbiornikach była toksyczna, stwierdza uczony. Dodaje, że jest mało prawdopodobne, by Majowie używali tej wody. Musiała ona wyglądać obrzydliwie i smakować obrzydliwie. Musiały występować na niej wielkie zakwity. Nikt nie chciałby pić tej wody, dodaje profesor Kenneth Tankersley.
W innych zbiornikach, położonych dalej od centrum, również stwierdzono obecność toksycznych, chociaż niższych, poziomów rtęci.
Do opuszczenia Tikal przyczynił się prawdopodobnie cały szereg czynników społecznych, ekonomicznych i politycznych. A kwestie środowiskowe również odegrały tutaj swoją rolę. Część roku była deszczowa i wilgotna. Jednak przez większą jego część jest sucho, brakuje opadów. Mieszkańcy Tikal mieli więc problem z wodą, mów Lentz.
Umieszczone w centralnym punkcie miasta wielkie zbiorniki na wodę odgrywały ważną rolę. To musiał być wspaniały widok, gdy jaskrawo pomalowane budynki odbijały się na powierzchni zbiorników. Władcy Majów nadali sobie, wśród innych rzeczy, przywilej kontrolowania źródeł wody. Mieli specjalny związek z bogami deszczu. Zbiorniki były ważnym symbolem, mówi profesor Nicholas Dunning. Dlatego też te najważniejsze umieszczono w pobliżu pałacu i centralnej świątyni.
Naukowcy połączyli rtęć, która zatruła wodę, z działalnością ludzi. Majowie uwielbiali cynober, minerał, z którego pozyskiwano czerwony barwnik. Problem w tym, że składa się on z siarczku rtęci. Dla mieszkańców Tikal źródłem cynobru była pobliska wulkaniczna Formacja Wszystkich Świętych. Naukowcy wykluczyli, by rtęć przedostała się do zbiorników z podłoża i skał, wykluczyli też popiół wulkaniczny. Jedynym jej źródłem mógł być więc barwnik. To oznacza, że rtęć ma pochodzenie antropogeniczne, mówi Tankersley.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ogniwo fotowoltaiczne działające w nocy? To nie pomyłka, przekonuje profesor Jeremy Munday z Wydziału Inżynierii Elektrycznej i Komputerowej Uniwersytetu Kalifornijskiego w Davis. Uczony twierdzi, że w idealnych warunkach takie ogniwo mogłoby generować po zachodzie słońca nawet 50 watów na m2. Artykuł na ten temat ogniw dostarczających prąd w nocy opublikowano na łamach ACS Photonics.
Profesor Munday wyjaśnia, że proces generowania energii elektrycznej przez ogniwa fotowoltaiczne działające w nocy jest podobny do tradycyjnych ogniw fotowoltaicznych, ale działa odwrotnie. Obiekt, który jest cieplejszy od otoczenia wypromieniowuje ciepło w postaci podczerwieni. Standardowe ogniwo jest chłodniejsze od słońca, więc absorbuje światło.
Jako, że przestrzeń kosmiczna jest bardzo zimna, cieplejszy od niej obiekt skierowany w jej stronę będzie wypromieniowywał ciepło. Ludzkość od setek lat wykorzystuje to zjawisko do schładzania obiektów w nocy.
Standardowe ogniwa słoneczne absorbują światło, co prowadzi do pojawienia się przepływu prądu. W naszych urządzeniach światło jest emitowane, a prąd i napięcie biegną w przeciwnym kierunku, jednak wciąż generujemy moc. Musimy użyć innych materiałów, ale podstawy fizyczne są te same, mówi Munday.
To samo urządzenie mogłoby też pracować za dnia, jeśli zablokuje się mu bezpośredni dostęp do światła słonecznego lub odwróci w przeciwną do słońca stronę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na hiszpańskim Uniwersytecie w Maladze powstał tani t-shirt, który generuje energię elektryczną z różnic temperatur pomiędzy ludzkim ciałem a otoczeniem. Prototypowe e-tekstylia powstały z wykorzystaniem skórki z pomidorów, a opracowano je przy współpracy z Włoskim Instytutem Technologii w Genui.
Dotychczas w urządzeniach elektronicznych zwykle używa się metali. Nasz projekt poszedł o krok dalej i jesteśmy w stanie generować elektryczność za pomocą lżejszego, tańszego i mniej toksycznego materiału mówi jeden z autorów badań, Jose Alejandro Heredia.
Uczeni z wody, etanolu pozyskanego ze skórek pomidorów oraz nanocząstek węgla stworzyli roztwór, który po podgrzaniu głęboko penetruje bawełnę i do niej przywiera, nadając jej właściwości elektryczne. Jeśli ktoś spaceruje czy biegnie, rozgrzewa się. Jeśli taka osoba ma na sobie naszą koszulkę, wytwarza elektryczność dzięki różnicy temperatury pomiędzy swoim ciałem a otoczeniem, wyjaśnia Susana Guzman.
W tej chwili naukowcy pracują nad rozwiązaniem, dzięki któremu koszulka wygeneruje światło lub też pozwoli na ładowanie smartfona. W ramach naszych wcześniejszych badań ze skórki pomidorowej i grafenu stworzyliśmy antenę Wi-Fi. Pracujemy nad jej zintegrowaniem z t-shirtem, dodaje Guzman.
W niedalekiej przyszłości mogą więc powstać t-shirty, które pozwolą na ładowanie smartfona i innych urządzeń, będą się świeciły, dzięki czemu będziemy lepiej widoczni dla kierowców. Fakt, że będą generowały prąd daje spore pole do popisu. W takich ubraniach możliwe będzie zintegrowanie np. czujników monitorujących stan zdrowia czy też dokonujących zapisu i analizy funkcji organizmu biegacza.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Upały, które właśnie nadciągnęły nad Polskę, mogą oznaczać problemy dla elektrowni. Im jest cieplej, tym więcej urządzeń chłodzących włączają ludzie, a to oznacza duże wzrosty zużycia prądu. Tymczasem polskie elektrownie są chłodzone głównie wodą z rzek. To powoduje dwa problemy. Po pierwsze stany rzek są niskie, po drugie, ze względu na wymogi ochrony środowiska, woda użyta do chłodzenia bloków energetycznych nie może być zbyt gorąca przed zrzuceniem jej do rzeki. To zaś oznacza, że albo trzeba obniżyć moc elektrowni, czyli produkować mniej prądu, albo włączyć dodatkowe schładzacze, a to zwiększa straty energii. Jak powiedział Rzeczpospolitej profesor Władysław Mielczarski z Politechniki Łódzkiej, w tym roku jeszcze polski system energetyczny powinien dać sobie radę, jednak sytuacja będzie się pogarszała i w kolejnych latach powinniśmy przygotować się na wyłączenia prądu.
W Polsce przemysł węglowy pobiera aż 70% całej używanej wody. Dla porównania w Niemczech jest to 18%, a w całej UE – 13,7%. To jednak nie oznacza, że tylko Polska jest narażona na kłopoty. Jak mówi Mielczarski, cała Europa może już w ciągu najbliższych 2–3 lat doświadczyć blackoutów spowodowanych upałami. Oczywiście Polska może w razie potrzeby kupić prąd za granicą, jednak to zabezpieczenie coraz bardziej iluzoryczne. Naszymi potencjalnymi dostawcami prądu mogą być Czesi lub Niemcy. Tymczasem w samym tylko czerwcu niemiecki system energetyczny aż czterokrotnie był na granicy załamania.
Polskim problemem jest energetyka oparta w dużej mierze na węglu oraz fakt, że nasze elektrownie były budowane głównie w latach 60. i 70. ubiegłego wieku, kiedy nawet w lecie występowały obfite opady. Wówczas nie brakowało wody do chłodzenia elektrowni. Obecnie jest z tym coraz większy kłopot.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.