Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Oddychanie przez nos wspomaga zapamiętywanie zapachów

Rekomendowane odpowiedzi

Sposób, w jaki oddychamy, może wpłynąć na to, jak dobrze nasze wspomnienia się skonsolidują (wzmocnią i ustabilizują). Jeśli po zapoznaniu się z zestawem zapachów oddychamy przez nos, a nie przez usta, lepiej zapamiętamy wonie.

Nasze badanie pokazuje, że kiedy w okresie konsolidowania wspomnień [podczas transferu doświadczenia do pamięci długotrwałej] oddychamy przez nos, lepiej zapamiętujemy zapachy - podkreśla dr Artin Arshamian z Karolinska Institutet. Nikt tego wcześniej nie zademonstrował.

Podczas eksperymentu przy 2 okazjach ochotnicy uczyli się 12 zapachów. Później proszono ich, by przez godzinę oddychali nosem (z zaklejonymi ustami) bądź przez usta (z nosem zaciśniętym klamerką). Następnie naukowcy prezentowali im stare i nowe (12) zapachy i pytali, które pochodziły z poprzedniej sesji. Okazało się, że osoby, które między sesjami uczenia i rozpoznawania oddychały przez nos, pamiętały wonie lepiej.

Następnym krokiem jest zmierzenie, co dzieje się w mózgu podczas oddychania i jak wiąże się to z pamięcią. Wcześniej było to praktycznie niemożliwe, bo elektrody trzeba by wprowadzić bezpośrednio do mózgu. Obeszliśmy jednak ten problem i wspólnie z Johanem Lundströmem pracujemy nad nowymi sposobami pomiaru aktywności opuszki węchowej bez wprowadzania elektrod.

Wcześniejsze badania wykazały, że receptory w opuszce węchowej nie tylko wykrywają zapachy, ale i zmiany w samym przepływie powietrza. W poszczególnych fazach wdechu i wydechu aktywują się różne części mózgu. Nie wiadomo jednak, na jakiej zasadzie zachodzi synchronizacja oddychania i aktywności mózgu i jak to oddziałuje na mózg, a więc i na nasze zachowanie.

Idea, że oddychanie wpływa na zachowanie, nie jest nowa. Wiedza na ten temat towarzyszy nam od tysięcy lat w takich dziedzinach, jak np. medytacja. Dotąd nikt jednak nie wykazał naukowo, co dokładnie dzieje się w mózgu. Teraz mamy narzędzia, które [miejmy nadzieję] ujawnią nowe kliniczne fakty.

Naukowcy sądzą, że gdy wspomnienia są odtwarzane i wzmacnianie podczas konsolidacji, oddychanie przez nos ułatwia komunikację między sieciami sensorycznymi i pamięciowymi.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wraz z nadejściem jesieni gwałtownie rośnie liczba przeziębień. Nigdy nie otrzymaliśmy przekonującej odpowiedzi na pytanie, dlaczego w chłodnych miesiącach dochodzi do większej liczby infekcji wirusowych. Nasze badania są pierwszymi, które wskazują na biologicznie prawdopodobne wyjaśnienie, mówi dr Benjamin Bleier z Massachusetts Eye and Ear Infirmary oraz Harvard Medical School.
      Powszechnie panuje przekonanie, że dzieje się tak, gdyż w chłodniejszych miesiącach ludzie więcej przebywają w pomieszczeniach, zatem infekcje łatwiej się przenoszą.  Okazuje się jednak, że przyczyna leży gdzie indziej.
      W 2018 roku profesor Mansoor Amiji z Northwestern University odkrył, że w nosie istnieje wbudowany mechanizm odpornościowy. Nos jest tym miejscem, w którym powietrze potencjalnie zawierające patogeny po raz pierwszy trafia do naszego organizmu. Przed 4 laty Amiji zauważył, że znajdujące się wewnątrz niego komórki, gdy wykryją bakterię, uwalniają pęcherzyki, które otaczają bakterię, przyczepiają się do niej i ją zabijają.
      Teraz Bleier we współpracy z Amijim postanowił odpowiedzieć na dwa dodatkowe pytania. Czy pęcherzyki wydzielane w nosie zabijają też wirusy? Czy temperatura powietrza wpływa na odpowiedź antywirusową, co mogłoby wyjaśniać, dlaczego w chłodnych miesiącach dochodzi do większej liczby zakażeń wirusowych.
      Naukowcy pobrali próbki z nosa ochotników, a następnie hodowali je w laboratorium w dwóch różnych temperaturach. Standardowej temperaturze organizmu 37 stopni Celsjusza oraz 32 stopni Celsjusza, czyli takiej, jaka panuje w nosie gdy jesteśmy na zewnątrz w czasie zimnego dnia.
      Badania wykazały, że w normalnej temperaturze ciała pęcherzyki były wydzielane w dużej ilości i z powodzeniem zwalczały wirusy. Pęcherzyki przyczepiały się do wirusów, które znajdowały się w wydzielinie z nosa, mówi Di Huang z Harvard Medical School. Jednak w chłodniejszych temperaturach wydzielało się znacznie mniej pęcherzyków i nie radziły one sobie tak dobrze z dwoma testowymi rhinowirusami i koronawirusem, które są typowymi patogenami wywołującymi zimowe przeziębienia.
      Autorzy badań zastanawiają się, czy w przyszłości uda się opracować np. rodzaj sztucznej „gąbki”, do której wirusy by się przyczepiały i gdzie byłyby niszczone, zanim zainfekują prawdziwą komórkę. Więcej o badaniach można przeczytać na łamach The Journal of Allergy and Clinical Immunology.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowe badania sugerują, że ssaki – a przynajmniej myszy i świnie – mogą oddychać za pomocą... jelit. Okazało się bowiem, że u zwierząt mających problemy z oddychaniem, podawanie tlenu przez odbyt pomaga je ustabilizować. Tlen jest wchłaniany przez tkankę jelit. Odkrycie może pewnego dnia prowadzić do opracowania ratującej życie metody przezodbytniczej wentylacji ludzi, u których nie można podać tlenu w tradycyjny sposób.
      Wygląda to na szalony pomysł. Jednak dane są przekonujące, mówi Sean Colgan, gastroenterolog z University of Colorado, który nie był zaangażowany we wspomniane badania.
      Ssaki oddychają przez usta i nos, a tlen jest rozprowadzany w organizmie za pośrednictwem płuc. Wiemy jednak, że istnieją zwierzęta wodne, jak ogórki morskie czy ryby sumokształtne, które do oddychania używają jelit. Wiemy też, że ludzkie jelita łatwo wchłaniają lekarstwa. Nie wiadomo było jednak, czy tlen może przenikać z jelit ssaków do ich krwi.
      Takanori Takebe, gastroenterolog z Cincinnati Children's Hospital i jego zespół prowadzili badania na myszach i świniach, u których wywołano hipoksję (niedobór tlenu w tkankach). W jednej z grup znajdowało się 11 myszy. Czterem z nim jelita oskrobano, by zmniejszyć grubość wyściółki i poprawić absorpcję tlenu. Następnie 4 zwierzętom z oskrobanymi jelitami i 4 z nieoskrobanymi wprowadzono przez odbyt czysty tlen. Wszystkie 11 myszy nie miały dostępu do tlenu, którym mogły oddychać w sposób tradycyjny.
      Trzy myszy, które nie otrzymały w ogóle tlenu przeżyły średnio 11 minut. Myszy, którym nie oskrobano jelit i podawano tlen przez odbyt, przeżyły średnio 18 minut. Z kolei 75% myszy, kórym oskrobano jelita i podawano tlen przez odbyt, przeżyło cały trwający godzinę eksperyment.
      Takebe i jego zespół chcieli jednak zrezygnować z trudnego i niebezpiecznego procesu skrobania jelit. Zastąpili więc tlen związkami perfluorokarbonowymi (PFC), które zawierają dużo tlenu i są używane podczas operacji jako środki krwiozastępcze. Jako, że perfluorokarbony są gęste, mogą też pomóc w wypłukaniu śluzu z jelit.
      Naukowcy wprowadzili perfluorokarbony do odbytów trzech myszy i siedmiu świń z hipoksją. Jako grupę kontrolną wykorzystano dwie myszy i pięć świń, którym wprowadzono sól fizjologiczną.
      W grupie kontrolnej saturacja spadła. Tymczasem u myszy, którym wprowadzono PFC powróciła do normy. Z kolei u świń saturacja zwiększyła się o około 15%, hipoksja minęła, a temperatura oraz kolor skóry i kończyn powróciły do normy w ciągu kilku minut.
      Badania dowodzą, że ssaki mogą wchłaniać tlen przez odbyt i że nowa metoda jest bezpieczna. Jej bezpieczeństwo musi jeszcze zostać przetestowane na ludziach. Takebe uważa, że metoda ta przyda się tam, gdzie zawodzą tradycyjne metody podawania tlenu. Z takimi przypadkami mieliśmy do czynienia np. podczas pandemii COVID-19.
      Markus Bosmann, pulmonolog z Boston University, który nie był zaangażowany w badania, mówi, że nawet jeśli nowa metoda jest bezpieczna, będzie ona zdecydowanie mniej efektywna od tradycyjnych metod. Ponadto, jeśli kiedykolwiek będzie używana na ludziach, prawdopodobnie jej stosowanie będzie ograniczone czasowo. Wprowadzanie tlenu do jelit prawdopodobnie zabije mikrobiom, niezbędny do trawienia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z dwóch czołowych instytucji naukowych świata – MIT i Uniwersytetu Harvarda – zidentyfikowali konkretne typy komórek w nosie, płucach i jelitach, które są celem ataku koronawirusa SARS-CoV-2. Analiza baz danych RNA pozwoliła uczonym określić, w których z komórek naszego organizmu dochodzi do ekspresji dwóch protein potrzebnych wirusowych do zainfekowania komórki. Odkrycie może pomóc w opracowaniu nowych i przystosowaniu istniejących leków do walki z COVID-19.
      Niemal od samego początku epidemii wiemy, że koronawirus SARS-CoV-2 przyłącza się, za pomocą białka strukturalnego S, do obecnego na powierzchni ludzkich komórek receptora ACE2 (angiotensin-converting enzyme 2 – konwertaza angiotensyny 2). Po przyłączeniu inna proteina, TMPRSS2, pomaga aktywować białko S, umożliwiając wirusowi wniknięcie do komórki. Gdy tylko rola tych protein została biochemiczne potwierdzona, zaczęliśmy przeszukiwać bazy danych, by stwierdzić, gdzie występują geny odpowiedzialne za ekspresję tych protein, mówi jeden z autorów badań, Jose Ordovas-Montanes.
      Wiele z analizowanych danych pochodziło z laboratoriów skupionych wokół projektu Human Cell Atlas, którego celem jest skatalogowanie wzorców aktywności genów dla każdego rodzaju komórek obecnego w ludzkim organizmie. Naukowcy skupili się na analizie komórek z nosa, płuc i jelit, gdyż dotychczasowe dowody wskazują, że wirus może zainfekować każdy z tych narządów. Następnie uzyskane wyniki porównali z danymi z organów, które nie są infekowane przez SARS-CoV-2.
      Okazało się, że w jamie nosowej komórkami, w których dochodzi do ekspresji RNA zarówno dla ACE2 jak i TMPRSS2, są komórki kubkowe. To właśnie one wydzielają śluz. I są drugimi co do częstotliwości występowania komórkami nabłonka dróg oddechowych. Są one też obecne w jelicie cienkim, jelicie grubym i spojówce powieki górnej.
      Z kolei w płucach ekspresja RNA dla obu protein potrzebnych koronawirusowi do zaatakowania komórek zachodzi w pneumocytach typu 2. To komórki wyścielające pęcherzyki płucne i odpowiedzialne za ich otwarcie. Jeśli zaś chodzi u jelita, to do największej ekspresji RNA dla ACE2 i TMPRSS2 dochodzi w enterocytach, które – obok komórek kubkowych i komórek endokrynowych – budują nabłonek błony śluzowej jelita cienkiego.
      Być może to nie wszystko, ale z pewnością mamy teraz znacznie bardziej jasny obraz niż wcześniej. Możemy teraz stwierdzić, że w wymienionych typach komórek dochodzi do ekspresji obu tych typów receptorów, dodaje Ordovas-Montanes.
      Podczas swoich badań naukowcy zauważyli jeszcze jedną zaskakującą rzecz. Okazało się, że ekspresja genu ACE2 jest prawdopodobnie skorelowana z aktywacją genów, o których wiadomo, że są aktywowane przez interferon, czyli proteinę, którą organizm wytwarza w reakcji na infekcję wirusową. Chcąc zweryfikować to spostrzeżenie, naukowcy potraktowali komórki z jamy nosowej interferonem i okazało się, że rzeczywiście doszło do aktywizacji genu ACE2.
      Interferon pomaga zwalczać infekcję poprzez zaburzanie zdolności wirusa do replikacji i aktywowanie komórek układu odpornościowego. Uruchamia on też zestaw genów, który ułatwia komórkom walkę z infekcją. Obecne badania są pierwszymi, które wykazały zwiazek ACE2 z reakcją na interferon. Spostrzeżenie to sugeruje, że koronawirusy mogły wyewoluować tak, by wykorzystywać systemy obronne organizmu, przejmując niektóre proteiny i używając je do własnych celów. Ordovas-Montanes przypomina, że również inne wirusy wykorzystują geny aktywowane przez interferon by dostać się do wnętrza komórek.
      Interferon niesie ze sobą wiele korzyści, dlatego jest czasami używany do walki z infekcjami, np. podczas leczenia wirusowego zapalenia wątroby typu B i C. Jednak obecne odkrycie oznacza, że wykorzystanie interferonu do leczenia COVID-19 może być bardziej skomplikowane. Z jednej bowiem strony środek ten może stymulować geny, które pomagają komórkom zwalczać infekcje i przetrwać uszkodzenia wywołane przez wirusa, z drugiej zaś strony interferon może dostarczać wirusowi nowe cele ataku.
      Trudno jest w tej chwili jednoznacznie określić rolę interferonu w zwalczaniu nowego koronawirusa. Jedynym sposobem na zrozumienie jego działania jest przeprowadzenie ściśle kontrolowanych testów klinicznych, mówi drugi z autorów badań, Alex K. Shalek. Przypomnijmy, że interferon beta, w połączeniu z dwoma innymi środkami, jest jedną z 4 potencjalnych terapii antykoronawirusowych testowanych właśnie przez WHO.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Muszki owocowe wydają się nie pamiętać traumatycznych wydarzeń, jeśli są trzymane w ciemności. Jak widać, światło wpływa na magazynowanie (retencję) w pamięci długotrwałej (ang. long-term memory, LTM). Naukowcy z Tokyo Metropolitan University zidentyfikowali mechanizm molekularny, który odpowiada za to zjawisko.
      Autorzy artykułu z Journal of Neuroscience uważają, że ich odkrycie może się przyczynić do opracowania nowych metod terapii dla osób, które przeżyły traumę.
      Podtrzymywanie wspomnienia nie jest wcale trywialnym procesem. Niewiele wiadomo o tym, w jaki sposób skonsolidowane wspomnienie jest przez długi czas utrzymywane w mózgu mimo ciągłej wymiany molekularnych substratów i reorganizacji komórkowej. To bardzo ważne zjawisko stanowi przedmiot zainteresowania licznych neuronaukowców.
      Wiadomo, że światło odkrywa bardzo istotną rolę w regulowaniu zwierzęcej fizjologii, np. rytmów okołodobowych czy nastroju. Chcąc się dowiedzieć, jak to wygląda w przypadku LTM, prof. Takaomi Sakai postanowił zbadać dzienne muszki (Drosophila).
      Japończycy stykali samce z samicami, które kopulowały i przez to stały się niereagujące. Dla samców, które nie spółkowały, jest to stresujące. W normalnych warunkach po przekazaniu takiego doświadczenia do LTM samce nie próbują się już zalecać (nawet jeśli są otoczone samicami, które nie kopulowały).
      Naukowcy stwierdzili, że samce, które doświadczyły traumy, a potem przez 2 lub więcej dni były trzymane w ciemności, nie miały oporów związanych ze spółkowaniem, a muszki funkcjonujące w ramach normalnego cyklu dnia i nocy już tak. To pokazuje, że światło środowiskowe w jakiś sposób modyfikuje magazynowanie w LTM (jest kluczowe dla podtrzymania wspomnień).
      Ponieważ okazało się, że nie chodzi o niedobór snu, Japończycy skupili się na białku zwanym czynnikiem rozpraszającym pigment (ang. pigment-dispersing factor, Pdf), którego ekspresja zachodzi w odpowiedzi na światło. Po raz pierwszy udało się wykazać, że Pdf reguluje transkrypcję białka wiążącego się z elementem odpowiedzi na cAMP (ang. cAMP-response element binding protein, CREB) w ciałach grzybkowatych, a więc strukturze związanej z pamięcią i uczeniem.
      Czasowa aktywacja neuronów Pdf kompensowała zaburzenia LTM związane z ciągłą ciemnością.
      Trudno zapomnieć traumatyczne doświadczenia, a mogą one poważnie obniżyć jakość życia. Odkrycia zespołu pokazują, jak na pamięć żywego organizmu wpływają czynniki środowiskowe. To otwiera drogę nowym terapiom dla ofiar urazów; Japończycy wspominają nawet o wymazywaniu wspomnień.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Psy pomagają ludziom w wielu zadaniach. Wygląda na to, że ich lista wydłuży się o kolejną pozycję, gdyż psi detektywi są w stanie wywęszyć wywoływane przez bakterie zielenienie cytrusów tygodnie, a nawet lata przed pojawieniem się objawów choroby na liściach i korzeniach.
      Zielenienie cytrusów (znane też pod chińską nazwą huánglóngbìng, HLB) zaatakowało sady pomarańczy, cytryn i grejpfrutów na Florydzie, w Kalifornii i Teksasie. Zielenienie cytrusów jest powodowane przez bakterie Candidatus Liberibacter spp. Przenoszą je żerujące na drzewkach miodówki - Diaphorina citri i Trioza erytreae. Liście zainfekowanego drzewka pokrywają się plamami i żółkną. Gałęzie i system korzeniowy obumierają.
      Wykorzystywana technologia ma tysiące lat - to psi nos. Po prostu wytresowaliśmy psy, by polowały na nową zdobycz: bakterie, które wywołują chorobę upraw cytrusów - opowiada Timothy Gottwald, badacz z amerykańskiego Departamentu Rolnictwa.
      Autorzy raportu z pisma Proceedings of National Academies of Sciences podkreślają, że psi detektywi są szybsi, tańsi i dokładniejsi od ludzi zbierających setki liści do analizy laboratoryjnej.
      Naukowcy tresowali 10 psów. Miały one wykrywać patogen Candidatus Liberibacter asiaticus (CLas). Jak napisano w artykule, czworonogi cechowała bardzo wysoka trafność, czułość oraz specyficzność.
      W jednym z eksperymentów, prowadzonym w gaju grejpfrutowym w Teksasie, odróżniając świeżo zainfekowane i zdrowe drzewka, wytresowane psy osiągnęły aż 95% trafność. Tymczasem testy DNA wykryły mniej niż 70% zainfekowanych roślin. Im szybciej wykryje się chorobę, tym większe szanse na zahamowanie epidemii.
      Widuje się psy pracujące na lotniskach, wykrywające narkotyki i materiały wybuchowe. Może wkrótce ujrzymy jest pracujące na większej liczbie farm.
       

       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...