Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zmiennofazowy magnetyt

Rekomendowane odpowiedzi

Fizycy z Rice University odkryli nowe właściwości w jednym z najlepiej znanych i zbadanych przez człowieka minerałów – magnetycie. Po schłodzeniu do temperatury niższej niż -157 stopni Celsjusza magnetyt z izolatora zmienił się w przewodnik.

To fascynujące, że taki materiał, który jest badany przez człowieka od tysięcy lat, wciąż kryje zagadki – mówi Doug Natelson, profesor fizyki i astronomii. To odkrycie pokazuje nam, czego możemy dokonać dzięki nowoczesnym urządzeniom pozwalającym badać materiały w skali nano – dodaje.

Magnetyczne właściwości minerału zostały udokumentowane w Chinach ponad 2000 lat temu, a przed 900 laty Chińczycy budowali kompasy, w których wykorzystywano magnetyt.

Fizycy od ponad 60 lat wiedzą, że elektryczne właściwości magnetytu zmieniają się w niskich temperaturach. Teraz odkryli, że przykładając do minerału odpowiednio wysokie napięcie, zmieniają go z isolatora w przewodnik. Po zmniejszeniu napięcia magnetyt znowu staje się izolatorem. Na razie naukowcy nie wiedzą, co powoduje takie przełączanie się stanów tego materiału. Mają nadzieję, że dalsze badania rzucą nieco światła na tę zagadkę.

Prace nad magnetytem mają jak najbardziej praktyczne znacznie. Materiały zmiennofazowe są coraz powszechniej stosowane w elektronice i przez najbliższe lata będą odgrywały w niej olbrzymią rolę.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W odpowiednich warunkach woda może stać się metalem, a następnie izolatorem, stwierdzili uczeni z Cornell University. W PNAS ukazał się artykuł, w którym Neil Ashcroft, Roald Hoffmann i Andreas Hermann opisują wyniki swoich teoretycznych obliczeń.
      Wynika z nich, że przy ciśnieniu rzędu 1-5 terapaskali woda tworzy stabilne struktury. Mimo, że ciśnienie takie jest dziesiątki milionów razy większe od ciśnienia ziemskiego, istnienie wody w takim stanie nie jest wykluczone. Wręcz przeciwnie, może ona powszechnie występować nawet w naszym Układzie Słonecznym. Tak olbrzymie ciśnienie może panować wewnątrz Urana.
      Z wyliczeń uczonych wynika, że powyżej 1 terapaskala poszczególne molekuły wody przestają istnieć, a H2O zostaje ściśnięta tworząc siatkę połączeń tlenu i wodoru, która przyjmuje najróżniejsze kształty. Już wcześniej obliczano, że przy ciśnieniu 1,55 TPa woda staje się metalem i ma najbardziej stabilną strukturę. Naukowcy z Cornell poszli dalej i udało im się wyliczyć, że najbardziej stabilna jest woda przy ciśnieniu wyższym od 4,8 TPa. Wówczas jednak traci ona właściwości metalu i staje się izolatorem.
      Jak zauważa profesor Ashcroft, najbardziej niezwykłym wnioskiem wypływającym z obliczeń jest odkrycie, że olbrzymie ciśnienie powoduje, iż woda przestaje być ciałem stałym i w pewnym momencie zamienia się w kwantową ciecz. Trudno jest to sobie wyobrazić - topienie lodu pod wpływem podwyższonego ciśnienia - stwierdził naukowiec.
    • przez KopalniaWiedzy.pl
      Uczeni z Rice University odkryli prosty sposób na zmuszenie węglowych nanorurek do tego, by świeciły jaśniej. Nanorurki charakteryzują się pewną naturalną fluoroscencją, jednak reakcje chemiczne zachodzące na ich powierzchni prowadzą do jej zaniku.
      Bruce Weisman, pionier w badaniu spektroskopii nanorurek, odkrył, że dodanie niewielkiej ilości ozonu do nanorurek posiadających pojedynczą ściankę i wystawienie ich na działanie światła, powoduje, że atomy tlenu łączą się z nanorurkami, a fluoroscencja w bliskiej podczerwieni ulega wzmocnieniu. Odkrycie to pozwoli zastosować nanorurki w wielu dziedzinach nauki. Przydadzą się one zarówno w biologii, gdzie wzmocniona fluoroscencja pozwoli na śledzenie nanorurek wprowadzonych do komórek organizmu żywego, jak i posłużą do budowy laserów.
      Weisman i jego student Saunab Ghosh odkryli, że kluczowym elementem jest oświetlenie nanorurki. Nie jesteśmy pierwszymi, którzy badają wpływ ozonu na nanorurki. Takie prace prowadzone są od lat. Jednak wcześniej uczeni mieli ciężką rękę i wystawiali nanorurki na działanie dużych ilości ozonu. Wówczas jednak dochodzi do zniszczenia użytecznych właściwości optycznych nanorurek, ich fluoroscencja zostaje całkowicie wyłączona. My postanowiliśmy dodać zaledwie 1 atom tlenu na 2-3 tysiące atomów węgla. To bardzo mało - mówi Weisman.
      Metoda Weismana i Ghosha jest banalnie prosta. Uczeni zanurzyli nanorurki w wodzie, dodali do niej rozpuszczony ozon i całość oświetlili. Do przeprowadzenia użytecznej reakcji wystarczy nawet światło zwykłej lampki biurowej. W ten sposób powstały nanorurki wzbogacone tlenem, w których zdecydowana większość powierzchni pozostaje w stanie niezmienionym. Nanorurki absorbują zatem światło podczerwone, tworząc ekscytony, kwazicząsteczki mające tendencję do samoistnego przeskakiwania po nanorurkach. Przeskakują tak długo, aż napotkają atom tlenu.
      W czasie swojego życia ekscyton może odwiedzić dziesiątki tysięcy atomów węgla. Nasz pomysł wykorzystuje ten fakt, gdyż założyliśmy, że ekscyton będzie skakał wystarczająco długo, by napotkać miejsce wzbogacone tlenem. A gdy do tego dojdzie, ekscyton w nim pozostanie, gdyż jest to miejsce energetycznie stabilne. Tlen więzi ekscyton, co prowadzi do emisji fali światło o większej długości światła niż w naturalnej fluoroscencji nanorurek. Mówiąc wprost - większa część nanorurek działa jak antena absorbująca energię i kierująca ją do miejsc wzbogaconych tlenem. Możemy stworzyć nanorurki, w których 80-90% emisji pochodzi z miejsc wzbogaconych - stwierdził Weisman.
      Testy laboratoryjne wykazały, że tak spreparowane nanorurki utrzymują swoje nowe właściwości przez wiele miesięcy.
      Weisman zaznacza, że dzięki temu odkryciu, nanorurki można wykrywać światłem niedostrzegalnym dla człowieka. Dlaczego jest to ważne? Ponieważ w wykorzystywanych w biologii systemach wykrywania, za każdym razem gdy posłużymy się światłem widzialnym uzyskamy nieco emisji z tła, z komórek i tkanek, co zaciemnia cały obraz. Korzystając z podczerwieni nie mamy tego problemu - wyjaśnia.
      Naukowcy przeprowadzili już odpowiednie testy dodając nanorurki do kultur ludzkich komórek. Po zastosowaniu podczerwieni nanorurki emitowały jasne światło i były łatwo dostrzegalne. Przy świetle widzialnym znacznie trudniej było określić miejsce, w którym się znajdują.
       
      http://www.youtube.com/watch?v=iVM_5ktGtnw
    • przez KopalniaWiedzy.pl
      Badacze z Rice University poinformowali o opracowaniiu nowej metody produkcji grafenu z bogatych w węgiel substancji, takich jak np. cukier. Opracowali oni jednoprzebiegowy proces odbywający się w niższej niż dotychczas temperaturze, co ułatwia cały proces produkcyjny.
      Chemik James Tour i jego zespół twierdzą, że duże płachty grafenu wysokiej jakości mogą być tworzone w temperaturze już 800 stopni Celsjusza z wielu źródeł zawierających węgiel. Dotychczas do ich powstania wymagana była temperatura rzędu 1000 stopni. Przy 800 stopniach krzemowe podłoże [na którym powstaje grafen - red.] pozostaje przydatne w elektronice, podczas gdy w 1000 stopni traci ono ważne domieszki - mówi Tour.
      Autorem odkrycia jest student Toura, Zhengzong Sun, który zauważył, że nałożenie zawierających w węgiel substancji na podłoże bogate w miedź czy nikiel pozwala produkować jedno-, dwu- i wielowarstwowe płachty grafenu. Proces taki nadaje się też do tworzenia grafenu wzbogacanego domieszkami, co umożliwia manipulowanie jego elektronicznymi i optycznymi właścicielami.
      Najpierw Sun nałożył na miedziane podłoże szkło akrylowe (pleksiglas - PMMA). Po podgrzaniu w warunkach niskiego ciśnienia i obecności wodoru i argonu z PMMA pozostał czysty węgiel ułożony w jednoatomową warstwę. Okazało się również, że manipulując przepływem gazów można kontrolować grubość grafenu uzyskiwanego z PMMA.
      Później student wraz z kolegami spróbował tego samego z wykorzystaniem... cukru. Miedzianą folę pokrył centymetrem kwadratowym cukru i poddał całość takiemu samemu procesowi, któremu poddawał PMMA. Spodziewał się, że uzyskany w ten sposób grafen będzie pełen defektów ze względu na strukturę substancji. Okazało się jednak, że defektów jest na tyle mało, iż materiał może zostać w praktyce wykorzystany.
      Procesu takiego nie udało się natomiast przeprowadzić w sytuacji, gdy podłożem dla materiału z węglem był krzem lub tlenek krzemu. Jednak możliwe jest uzyskanie grafenu, jeśli krzem zostanie najpierw pokryty warstwą miedzi lub niklu.
    • przez KopalniaWiedzy.pl
      Tegoroczni laureaci Nagrody Nobla, odkrywcy grafenu Kostya Novoselov i Andre Geim, stworzyli najcieńszy izlolator na świecie. Fluorografen powstał na bazie grafenu, jednak w przeciwieństwie do niego nie przewodzi prądu.
      Grafen jest bardzo dobrym przewodnikiem, gdyż z obu stron warstwy tego materiału znajdują się chmury elektronów. Uczeni z University of Manchester do każdego atomu węgla doczepili atom fluoru w ten sposób, by zaburzyć pracę chmury elektronów, ale jednocześnie, by nie zniszczyć heksagonalnej struktury grafenu. Wcześniej używali w tym celu atomów wodoru, jednak całość okazała się niestabilna w wysokich temperaturach.
      Zdaniem naukowców fluorografen to najcieńszy możliwy do uzyskania izolator, stworzony dzięki dołączeniu atomów fluoru do każdego atomu węgla w grafenie. To pierwszy stoichiometryczna chemiczna pochodna grafenu i jednocześnie półprzewodnik o szerokim paśmie wzbronionym. Flurografen jest mechanicznie silnym oraz chemicznie i termicznie stabilnym związkiem. Właściwości tego materiału są bardzo podobne do teflonu. Nazywam go 2D Teflon.
      Nowy materiał, po dalszych udoskonaleniach, może znaleźć szerokie zastosowanie w elektronice. Stanie się np. wysokiej jakości izolatorem w elektronice organicznej, a dzięki szerokiemu pasmu wzbronionemu może być całkowicie przezroczystym dla światła widzialnego półprzewodnikiem. Twórcy nie wykluczają zatem użycia go w LED-ach i wyświetlaczach przyszłości.
    • przez KopalniaWiedzy.pl
      Od dawna czynione są zabiegi, żeby podtrzymać prawo Moore'a, które dla układów krzemowych wkrótce się załamie. Przypomnijmy sobie, że prawo to mówi, że gęstość upakowania elementów układów scalonych podwaja się co dwa lata. Tymczasem wytwórcy układów pamięci uważają, że nie da się zejść z wielkością elementu poniżej 10 nanometrów. Pamięci flash dotrą do nieprzekraczalnej bariery jeszcze szybciej - w ich przypadku to 20 nanometrów. Pojawia się jednak szansa: lekceważony do tej pory tlenek krzemu. Naukowcy z Rice Uniwersity już pokazali działający układ pamięci z elementami wielkości 10 nanometrów.
      W zeszłym roku zespołowi profesora Jamesa Toura udało się zademonstrować funkcjonujący bit pamięci w postaci grafitowego drucika grubości 10 nanometrów. Odpowiednio dobrane napięcie na zmianę przerywało połączenie i przywracało je na żądanie, mniejsze napięcie pozwalało oczywiście na odczyt stanu. To zwiastowało nowy rodzaj trwałej pamięci, choć wówczas nie wiedziano jeszcze, w jaki sposób to działa.
      Nic dziwnego jednak, że prace kontynuowano, a zajęli się nimi wspólnie z prof. Tourem: Douglas Natelson, Lin Zhong i Jun Yao. To właśnie Jun Yao wytrwale szukał materiałów mogących zastąpić grafit. Po serii eksperymentów zarzucił całkiem odmiany węgla oraz metale i skupił się na tlenku krzemu, który jest - w przeciwieństwie do krzemu - izolatorem. Niełatwo było mu przekonać innych do tego materiału, który jest jednym z najlepiej przebadanych związków w nauce. Nie uważano, żeby tlenek krzemu był przydatny do wytwarzania układów elektronicznych. Tymczasem właśnie jego wada - przebicia - stała się zaletą.
      Cienka warstwa tlenku krzemu, umieszczona pomiędzy warstwami z polikrystalicznego krzemu, pod wpływem przyłożonego napięcia, ulega przemianie. Atomy tlenu wypadają ze związku i pomiędzy elektrodami formuje się cienki łańcuch nanokryształów krzemu. Ten cienki drucik daje się przerywać i łączyć przy pomocy napięcia elektrycznego identycznie, jak nanodrucik z grafitu, a ma grubość zaledwie pięciu nanometrów.
      To genialne w swej prostocie rozwiązanie - chwalą pomysł inżynierowie Rice University. W przeciwieństwie do standardowych elementów pamięci, „bit" tlenku krzemu nie przechowuje ładunku, więc wymaga tylko dwóch, zamiast trzech połączeń. Warstwy układów pamięci mogą również być łatwo nakładane na siebie, pozwalając na tworzenie trójwymiarowych, miniaturowych i bardzo pojemnych struktur pamięci. Rozwiązanie ma też inne zalety: bardzo dużą szybkość przełączania (poniżej 100 nanosekund), bardzo dużą wytrzymałość oraz kompatybilność ze standardowymi układami krzemowymi. Oznacza to, że można je łatwo wdrożyć do zastosowań komercyjnych. Tlenek krzemu jest również odporny na promieniowanie, co oznacza przydatność w zastosowaniach militarnych i kosmicznych. Układy takie będą również odporne na przykład na rozbłyski słoneczne. Powstał już pierwszy, działający układ pamięci tlenko-krzemowej o pojemności jednego kilobajta.
      Tlenek krzemu jest już wykorzystywany prze firmę NuPGA - założoną na bazie patentów inżynierów Rice University - tworząca programowalne macierze bramek. Takie macierze z tlenku krzemu, umieszczone pomiędzy warstwami układów scalonych, pozwalają na programową rekonfigurację połączeń pomiędzy nimi. Szlak dla układów pamięci opartych na tlenku krzemu jest więc już przetarty i - miejmy nadzieję - pojawią się one jak najszybciej na rynku.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...