Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Klej zastąpi szwy
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Nowotwory to jedna z głównych przyczyn zgonów w krajach uprzemysłowionych. Wiele z nich potrafimy leczyć lub kontrolować, ale mimo to wciąż umiera na nie duża liczba ludzi. Przyczyną jest zbyt późna diagnoza. Opracowanie metody wczesnego wykrywania rozwijającego się nowotworu pozwoliłoby nie tylko uratować życie wielu ludziom, ale znacząco obniżyłoby koszty terapii.
Potencjalną metodę ostrzegania o początkach nowotworu opracował profesor Martin Fusseneger ze Szwajcarskiego Instytutu Technologicznego w Zurichu i współpracujący z nim naukowcy. Wykorzystuje ona sieć syntetycznych genów rozpoznających bardzo wczesne etapy rozwoju nowotworów prostaty, płuc, piersi i jelita grubego. Na tych wczesnych etapach dochodzi do zwiększenia poziomu wapnia we krwi i właśnie ten podniesiony poziom wykrywa system Fussenegera.
Wspomniana sieć genów jest umieszczana w implancie, który wstrzykiwany jest pod skórę, gdzie bez przerwy monitoruje poziom wapnia we krwi. Gdy poziom ten zostaje przez dłuższy czas przekroczony, uruchamiana jest cała kaskada sygnałów, które powodują, że we wstrzykniętej w określone miejsce na skórze zmodyfikowanej genetycznie grupie komórek dochodzi do produkcji melaniny. Na skórze pojawia się widoczne gołym okiem zaciemnione miejsce, które jest sygnałem ostrzegawczym o rozwijającym się nowotworze. Co istotne, sygnał ten pojawia się na długo zanim jeszcze nowotwór można wykryć za pomocą standardowych metod diagnostycznych. Posiadacz implantu powinien wówczas udać się do lekarza w celu specjalistycznej diagnostyki, mówi Fussenegger.
Naukowcy wykorzystali jako wskaźnik poziom wapnia, gdyż jest on ściśle kontrolowany przez organizm. Kości służą jako bufor regulujący poziom wapnia we krwi. Zbyt duża ilość tego pierwiastka może być sygnałem o rozwoju jednego z czterech wspomnianych typów nowotworów. Wczesna diagnostyka to klucz do sukcesu. Na przykład w przypadku raka piersi szanse na wyleczenie przy wczesnej diagnozie wynoszą aż 98%, podczas gdy przy późnej diagnozie spadają do 25%. Obecnie ludzie trafią do lekarza przeważnie wówczas, gdy guz daje jakieś objawy. Niestety, często jest wówczas zbyt późno, stwierdza Fussenegger.
Nawiększym ograniczeniem nowej metody jest krótki czas życia implantu. Jak mówi Fussenegger, z literatury specjalistycznej wynika, że po zamknięciu w odpowiednich kapsułach żywe komórki mogą przetrwać około roku. Po tym czasie implant trzeba będzie zapewne wymieniać.
Na razie naukowcy dysponują wczesnym prototypem implantu. Był on z powodzeniem testowany na myszach i świniach. Profesor Fusseneger mówi, że opracowanie w pełni rozwiniętej wersji dla ludzi oraz proces jej testowania i dopuszczania do użytku potrwają co najmniej 10 lat.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W laboratoriach Uniwersytetu Kalifornijskiego w San Diego powstał samonaprawiający się hydrożel, który z pewnością znajdzie zastosowanie w medycynie, np. w funkcji szwów czy transporterów leków, oraz przemyśle. Na zasadzie zamka błyskawicznego żel wiąże się w ciągu zaledwie kilku sekund, w dodatku na tyle mocno, że wytrzyma wielokrotne rozciąganie.
Hydrożele powstają z łańcuchów polimeru. Ponieważ są galaretowate, przypominają tkanki miękkie. Wcześniej naukowcy nie potrafili uzyskać błyskawicznie samonaprawiających się żeli, co ograniczało ich zastosowania. Zespół Shyni Varghese poradził sobie z tym wyzwaniem, wykorzystując wolne łańcuchy boczne. Wystają one ze struktury pierwotnej (pierwszorzędowej) jak palce z dłoni i mogą się o siebie zaczepiać.
Samonaprawa to jedna z podstawowych właściwości tkanek żywych, która pozwala im przetrwać powtarzające się uszkodzenia. Nic więc dziwnego, że akademicy nie ustawali w próbach stworzenia sztucznego materiału o podobnych zdolnościach.
Podczas projektowania cząsteczek łańcuchów bocznych zespół korzystał z symulacji komputerowych. Ujawniły one, że zdolność hydrożelu do samonaprawy zależy od długości "palców". Kiedy w kwasowym roztworze umieszczano dwa cylindry z hydrożelu z łańcuchami bocznymi o optymalnej długości, natychmiast do siebie przywierały. Dalsze eksperymenty pokazały, że manipulując pH roztworu, kawałki hydrożelu można łatwo spajać (niskie pH) lub odłączać (wysokie pH). Proces wielokrotnie powtarzano, bez szkody dla siły związania.
Ameya Phadke, doktorantka z laboratorium Varghese, podkreśla, że elastyczność i wytrzymałość hydrożelu w kwaśnym środowisku, takim jak w żołądku, pozwala myśleć o tym materiale w kontekście łatania perforacji żołądka czy kontrolowanego dostarczania leków na wrzody.
Zespół uważa, że samonaprawiający się materiał można by wykorzystać w likwidowaniu przecieków kwasów z uszkodzonych pojemników. Gdy w plastikowym pojemniku wycięto otwór, hydrożel ją zatkał i zahamował wypływ kwasu.
W przyszłości Amerykanie zamierzają uzyskać hydrożele działające przy innych niż kwasowe wartościach pH.
-
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
!RCOL
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Wystawiona na oddziaływanie promieniowania ultrafioletowego nanopostać tlenku tytanu(IV) jest toksyczna dla organizmów morskich, a konkretnie dla fitoplanktonu (PLoS ONE).
Produkcja i wykorzystanie nanomateriałów w dobrach konsumenckich szybko rośnie, ale istnieją obawy, że materiały te, włączając w to nanocząstki, szkodzą środowisku. Oceany mogą być najbardziej zagrożone, bo ścieki przemysłowe [...] ostatecznie kończą właśnie tutaj - twierdzi Robert Miller z Uniwersytetu Kalifornijskiego w Santa Barbara.
Gdy na nanotlenek tytanu(IV) działa promieniowanie UV, powstają reaktywne formy tlenu (RFT). Z tego powodu TiO2 wykorzystuje się w powłokach antybakteryjnych czy w oczyszczaniu ścieków. Dotąd żadne z badań nie wykazało, że w warunkach normalnego poziomu promieniowania UV fotoaktywność TiO2 wiąże się ze środowiskową toksycznością.
Wcześniejsze eksperymenty sugerowały, że TiO2 nie wpływa na wodne organizmy, ale przeprowadzano je przy użyciu sztucznego promieniowania, o natężeniu UV o wiele niższym niż w promieniowaniu słonecznym. W najnowszych badaniach posłużyliśmy się światłem symulującym naturalne światło słoneczne. Okazało się, że takie warunki są niebezpieczne dla fitoplanktonu. Bez UV tlenek tytanu(IV) w żaden sposób nie oddziaływał na fitoplankton, ale w obecności promieniowania UV o niskim natężeniu im większe było stężenie nanotlenku tytanu(IV), tym więcej powstawało RFT. Należy pamiętać, że dalszy wzrost poziomu stresu oksydacyjnego może prowadzić do spadku elastyczności morskich ekosystemów.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.