Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Układy łatwiejsze w produkcji

Recommended Posts

Naukowcy z Princeton University poinformowali, że tworzenie żłobień na powierzchni układów scalonych – kluczowa czynność konieczna do wyprodukowania takich układów – może być wykonane niezwykle szybko i tanio. Nowa technologia jest tak prosta jak zrobienie kanapki.

Dzięki pracom akademików regularne żłobienia, które dzieli od siebie zaledwie 60 nanometrów, tworzą się same.

Technologia jest zadziwiająco prosta. Najpierw na sztywne podłoże, na przykład krzemowy plaster, nakłada się cienką warstwę polimeru, która z wierzchu zostaje przykryta kolejnym plastrem. Tak utworzona „kanapka” jest następnie zgrzewana.
Polimer znajdujący się pomiędzy dwoma kawałkami krzemu zaczyna pękać tworząc regularny wzór. Odległości pomiędzy pęknięciami są czterokrotnie mniejsze niż grubość warstwy polimeru.

Obecnie do wykonywania żłobień w formie kratownicy wykorzystuje się strumień elektronów, jonów lub też dokonuje się mechanicznych nacięć. Nacięcia wykonywane są jednak niezwykle powoli, dlatego też wykorzystuje się je na powierzchniach wielkości 1 milimetra kwadratowego lub mniejszych. Dzięki nowej technologii żłobienia tworzą się bardzo szybko.

Uczeni z Princeton już wykorzystali ją na powierzchni kilku centymetrów kwadratowych, a w przyszłości będzie można tę powierzchnię zwiększyć.

Akademicy złożyli już wniosek patentowy na swoją technologię, a w najbliższej przyszłości chcą zbadać, jakie siły powodują powstawanie tak niewielkich regularnych pęknięć.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Już w poprzedniej dekadzie interesowano się zastosowaniem interferencji RNA (wyciszania lub wyłączania ekspresji genu przez dwuniciowy RNA) w leczeniu nowotworów. Cały czas problemem pozostawało jednak dostarczanie RNA o sekwencji zbliżonej do wyłączanego wadliwego genu. Naukowcy z MIT-u zaproponowali ostatnio rozwiązanie - zbitki mikrogąbek z długich łańcuchów kwasu nukleinowego.
      Skąd problem z dostarczaniem? Małe interferujące RNA (siRNA, od ang. small interfering RNA), które niszczą mRNA, są szybko rozkładane przez enzymy zwalczające wirusy RNA.
      Paula Hammond i jej zespół wpadli na pomysł, by RNA pakować w tak gęste mikrosfery, że są one w stanie wytrzymać ataki enzymów aż do momentu dotarcia do celu. Nowy system wyłącza geny równie skutecznie jak wcześniejsze metody, ale przy znacznie zmniejszonej dawce cząstek. Podczas eksperymentów Amerykanie wyłączali za pomocą interferencji RNA gen odpowiadający za świecenie komórek nowotworowych u myszy. Udawało im się to za pomocą zaledwie 1/1000 cząstek potrzebnych przy innych metodach.
      Jak tłumaczy Hammond, interferencję RNA można wykorzystać przy wszystkich chorobach związanych z nieprawidłowo funkcjonującymi genami, nie tylko w nowotworach.
      Wcześniej siRNA wprowadzano do nanocząstek z lipidów i materiałów nieorganicznych, np. złota. Naukowcy odnosili większe i mniejsze sukcesy, ale nadal nie udawało się wypełnić sfer większą liczbą cząsteczek RNA, bo krótkich łańcuchów nie można ciasno "ubić". Ekipa prof. Hammond zdecydowała się więc na wykorzystanie jednej długiej nici, którą łatwo zmieścić w niewielkiej sferze. Długoniciowe cząsteczki RNA składały się z powtarzalnych sekwencji nukleotydów. Dodatkowo segmenty te pooddzielano krótkimi fragmentami, rozpoznawanymi przez enzym Dicer, który ma za zadanie ciąć RNA właśnie w tych miejscach.
      Podczas syntezy RNA tworzy arkusze, które potem samorzutnie zwijają się w bardzo zbite gąbkopodobne sfery. W sferze o średnicy 2 mikronów mieści się do 500 tys. kopii tej samej sekwencji RNA. Potem sfery umieszcza się na dodatnio naładowanym polimerze, co prowadzi do dalszego ich ściskania. Średnica wynosi wtedy zaledwie 200 nanometrów, a to niewątpliwie ułatwia dostanie się do komórki. W komórce Dicer tnie długą nić na serię 21-nukleotydowych nici.
    • By KopalniaWiedzy.pl
      Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
      Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
      Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
      Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
      Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
      W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
      Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
      Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
    • By KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
    • By KopalniaWiedzy.pl
      Szwajcarscy uczeni z École Polytechnique FÉdÉrale de Lausanne (EPFL), którzy na początku bieżącego roku poinformowali o świetnych właściwościach molibdenitu, materiału mogącego stać się konkurencją dla krzemu i grafenu, właśnie zaprezentowali pierwszy układ scalony zbudowany z tego materiału.
      Zbudowaliśmy prototyp, umieszczając od dwóch to sześciu tranzystorów i udowadniając, że możliwe jest przeprowadzenie podstawowych operacji logicznych. To dowodzi, że można zbudować większy układ - mówi profesor Andras Kis, dyrektor Laboratorium Nanoskalowych Struktur i Elektroniki (LANES).
       
      Uczony wyjaśnia, że molibdenit umożliwia budowanie mniejszych tranzystorów niż krzem. Obecnie nie można tworzyć warstw krzemu cieńszych niż 2 nanometry, gdyż istnieje ryzyko ich utlenienia się, co negatywnie wpływa na właściwości elektryczne materiału. Z molibdenitu można tworzyć efektywnie działającą warstwę o grubości zaledwie 3 atomów. Jest ona bardzo stabilna i łatwo w niej kontrolować przepływ elektronów. Ponadto molibdenitowe tranzystory są bardziej wydajne. Przełączają się też szybciej niż tranzystory krzemowe.
       
      Jak informuje profesor Kis, molibdenit równie efektywnie jak krzem wzmacnia sygnał elektryczny. Sygnał wyjściowy może być czterokrotnie silniejszy niż sygnał wejściowy. A to oznacza, że możliwe jest produkowanie bardzo złożonych układów. Dla grafenu ta wartość wynosi około 1. Poniżej tej wartości sygnał wyjściowy będzie zbyt słaby, by pobudził do pracy następny, podobny układ - mówi Kis.
       
      Molibdenit, w przeciwieństwie do krzemu, ma interesujące właściwości mechaniczne, które być może pozwolą na produkowanie elastycznych układów scalonych.
    • By KopalniaWiedzy.pl
      Na Northwestern University powstała nowa anoda dla akumulatorów litowo-jonowych. Umożliwia ona przechowywanie 10-krotnie więcej ładunku niż obecne elektrody, a sam akumulator można załadować 10-krotnie szybciej.
      Odkryliśmy sposób na dziesięciokrotne wydłużenie życia baterii litowo-jonowej. Nawet po 150 cyklach ładowania/rozładowywania, co zajmie rok lub więcej, nasz akumulator będzie pięciokrotnie bardziej wydajny niż współcześnie stosowane rozwiązania - mówi profesor Harold H. Kung.
      Współczesne baterie litowo-jonowe działają dzięki przesyłaniu jonów litu pomiędzy dwoma elektrodami - anodą i katodą. Gdy używamy energii, jony litu przemieszczają się z anody, przez elektrolit, do katody. Gdy ładujemy akumulator, podróż odbywa się w odwrotną stronę.
      Obecnie wydajność akumulatorów Li-Ion jest ograniczona dwoma czynnikami. Ich pojemność zależy od tego, jak wiele jonów litu może przechować anoda lub katoda. Z kolei prędkość rozładowywania, a zatem dostarczania energii, zależy od prędkości przemieszczana się jonów pomiędzy elektrolitem a anodą.
      We współczesnych akumulatorach anoda wykonana jest z węgla i na każde 6 jego atomów przechowuje jeden atom litu. Eksperymentowano z zastąpieniem węgla krzemem, który ma większą pojemność, gdyż przechowuje atom litu na każde 4 atomy krzemu. Jednak podczas pracy krzem znacznie zmienia swoje rozmiary, co prowadzi do uszkodzenia elektrody i spadku pojemności baterii.
      Ponadto poszczególne warstwy węgla w elektrodzie są bardzo cienkie, jednak długie. Podczas procesu ładowania każdy jon musi przebyć całą drogę od krawędzi by dotrzeć do kolejnych warstw. To zajmuje sporo czasu, a ponadto powoduje, że na krawędziach powstaje „korek" z jonów oczekujących na możliwość wyruszenia w drogę.
      Zespół Kunga postanowił za jednym zamachem rozwiązać oba problemy. Po pierwsze warstwy krzemu poprzedzielał warstwami węgla. Mamy dzięki temu znacznie większą pojemność energii, gdyż wykorzystaliśmy krzem, a jego poprzedzielanie zmniejszyło straty pojemności spowodowane rozszerzaniem się i kurczeniem krzemu - wyjaśnia Kung. Uczeni wykorzystali też proces utleniania do uzyskania niewielkich (10x20 nanometrów) dziur w warstwach węgla. Dziury te tworzą skróty, dzięki którym jony litu nie muszą podróżować przez całą warstwę. Pozwoliło to na 10-krotne skrócenie czasu ładowania baterii.
      Po udoskonaleniu anody uczeni chcą zająć się pracami nad katodą. Mają też zamiar opracować nowy elektrolit, który będzie powodował, że w wysokich temperaturach akumulator automatycznie przerwie pracę, dzięki czemu będzie bezpieczniejszy w użytkowaniu.
      Technologia Kunga i jego zespołu powinna trafić na rynek w ciągu 3-5 lat.
×
×
  • Create New...