Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Tajemnicza umowa pomiędzy Sunem i IBM-em

Recommended Posts

Sun i IBM, wieloletni rywale, podpisały umowę dotyczącą systemów operacyjnych. Żadna z firm nie chce ujawnić szczegółów tajemniczej umowy.

Sun ma swój własny system operacyjny – Solaris. Firma próbuje go promować jako otwartą alternatywę dla Linuksa, jednak jej starania nie przynoszą spodziewanych rezultatów. Tym bardziej, że główni sprzedawcy serwerów, IBM, HP i Dell, nie są zainteresowani zaoferowaniem Solarisa swoim klientom.

Oficjalnie o podpisaniu umowy poinformowali Jonathan Schwartz, prezes Suna, i Bill Zeitler, dyrektor IBM-owskiej grupy zajmującej się sprzętem. Może to oznaczać, iż w ramach umowy IBM zacznie sprzedawać serwery z Solarisem. Trudno w tej chwili osądzać, co może to oznaczać.

Dotychczas głównym systemem używanym przez IBM-a jest Linux. Błękitny Gigant zaczął jednak rozprowadzać swoje produkty z systemem Windows. Teraz w jego ofercie może znaleźć się Solaris.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowa Unia Astronomiczna ogłosiła decyzję w sprawie nadania nowych nazw gwiazdom i planetom. Wśród nowych nazw znalazły się też polskie Solaris i Pirx, czyli gwiazda i krążąca wokół niej planeta, znajdujące się w odległości 161 lat świetlnych od Ziemi.
      Układ planetarny BD+14 4559 został odkryty przez zespół profesora Andrzeja Niedzielskiego z Centrum Astronomii UMK. Teraz oficjalna nazwa gwiazdy brzmi Solaris, a planety – Pirx. To nazwy znane z twórczości Stanisława Lema.
      Solaris jest mniejsza, mniej masywna i chłodniejsza od Słońca. Wokół niej krąży planeta Pirx o macie o 4% większej o masy Jowisza i promieniu 23% większym niż promień tej planety. Pirx znajduje się w odległości 0,78 jednostki astronomicznej (to odległość między Ziemią a Słońcem) od Solarisa. Obiega ją w ciągu 269 ziemskich dni. Polski układ planetarny można obserwować przez lornetkę. Znajduje się on w gwiazdozbiorze Pegaza przy granicy z konstelacją Delfina.
      Głosowanie, w ramach których nazwano Solaris i Pirksa, zostało zorganizowane z okazji 100. rocznicy istnienia Międzynarodowej Unii Astronomicznej. W ramach IAU100 NameExoWorlds każdy kraj na świecie otrzymał do nazwania układ składający się z jednej gwiazdy i jednej planety.
      Polacy wybrali Solaris i Pirksa. Z kolei Albańczycy nazwali swoją gwiazdę Ilyrian – pochodzą bowiem od Illirów – a planetę Arber, gdyż tak w średniowieczu nazywano mieszkańców Albanii. Z kolei mieszkańcy Bangladeszu postanowili, że gwiazda będzie nazywała się Timir („ciemność” w języku bengalskim), a planeta to Tondra („drzemka” w bengalskim). Finowie postawili zaś na mitologię. Horna to świat podziemny, a Hisi to lokalne duchy. Podobnie postąpili mieszkańcy Wybrzeża Kości Słoniowej, którzy swoją gwiazdę nazwali Nyamien (najwyższe bóstwo w mitologii ludu Akan), a planecie nadali imię Asye (bogini Ziemi w mitologii Akan). Z kolei nasi południowi sąsiedzi, Czesi, podążyli tą samą drogą, co Polacy. Gwiazda Absolutno i planeta Markopulos to nazwy z dzieł sci-fi Karela Capka.
      Pełną listę nowych nazw można znaleźć na stronie Międzynarodowej Unii Astronomicznej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polscy naukowcy budują podwaliny dla innowacyjnych rozwiązań w elektronice. Przeprowadzone przez nich badania nad nanodrutami półprzewodnikowymi to krok ku wysokowydajnym ogniwom słonecznym czy tranzystorom sterowanym polem magnetycznym.
      W prestiżowym amerykańskim czasopiśmie naukowym Nano Letters ukazał się artykuł będący efektem badań przeprowadzonych w Narodowym Centrum Promieniowania Synchrotronowego SOLARIS oraz w jednostce macierzystej zespołu badawczego, czyli w Akademickim Centrum Materiałów i Nanotechnologii AGH.
      Badania kierowane przez dr inż. Katarzynę Hnidę-Gut wykazały, że właściwości magnetyczne nanodrutów z antymonku indu domieszkowanego manganem (InSb-Mn) można kontrolować przez odpowiedni dobór stężenia domieszki. Przełomowe w badaniach było to, że po raz pierwszy w procesie elektrosyntezy pulsacyjnej w porach AAO (anodyzowanego tlenku glinu) uzyskano wysokiej jakości nanodruty InSb-Mn, bazując na wybranych wcześniej optymalnych warunkach syntezy półprzewodnika, którym jest antymonek indu.
      Część pomiarów w ramach projektu badawczego przeprowadzono z wykorzystaniem promieniowania synchrotronowego. Dzięki eksperymentowi na linii PEEM/XAS możliwe było zbadanie lokalnej struktury w otoczeniu atomów manganu. Pozwolił on na potwierdzenie hipotezy, że atomy manganu w strukturze analizowanych nanodrutów tworzą małe klastry, np. Mn3. To właśnie te klastry są źródłem magnetyzmu w temperaturze pokojowej – objaśnia dr hab. inż. Marcin Sikora, jeden ze współautorów publikacji.
      Wykonanie tych badań bez synchrotronu byłoby możliwe, ale wyniki byłyby znacznie mniej dokładne, a cały pomiar zająłby kilka dni, a może nawet tygodni – dodaje prof. Sikora. Zebranie dobrej jakości widma na stacji końcowej XAS synchrotronu SOLARIS to około dwie godziny. W sumie badania synchrotronowe trwały dobę i objęły sześć próbek. Analiza wyników nie była skomplikowana i zakończyła się w przeciągu kilku dni.
      Pomiary w SOLARIS to zaledwie fragment projektu. Od pomysłu na badania i pierwszych prób wytworzenia magnetycznych nanodrutów do publikacji minęły cztery lata. Najbardziej pracochłonną częścią przedsięwzięcia było opracowanie metody syntezy nanodrutów, a następnie korelacja uzyskanych wyników analizy dyfrakcyjnej i magnetometrii – przyznaje główna autorka publikacji dr inż. Katarzyna Hnida-Gut. Mogę śmiało powiedzieć, że pomiary synchrotronowe to był chyba najprzyjemniejszy element tych badań – dodaje.
      Nanodruty półprzewodnikowe są materiałem wykorzystywanym w wysokowydajnych ogniwach słonecznych oraz sensorach. Mogą też znaleźć zastosowanie w elementach elektroniki przyszłości, w których ładunki będą płynęły nie w ścieżkach krzemowych, ale węglowych nanorurkach, grafenie i nanodrutach półprzewodnikowych. W półprzewodnikach magnetycznych przepływ elektronów zależy od orientacji ich spinów. Można z ich pomocą zbudować tranzystor sterowany polem magnetycznym. Powinien on być znacznie szybszy i bardziej energooszczędny od tranzystorów tradycyjnych – uważa prof. Sikora.
      Główna autorka badań przyznaje, że chociaż do zastosowań praktycznych jeszcze daleka droga, to nie zmienia faktu, że jej projekt to pierwsze takie badania nad elektrochemicznie wytworzonymi nanodrutami InSb-Mn. Dodatkowo nanodruty przygotowane zostały w taki sposób, że są magnetyczne nie tylko w ultraniskich temperaturach, ale również w temperaturze pokojowej i wyższej (do 200°C). Jest to ważna innowacja w badaniach nad materiałami dla elektroniki. Od dłuższego czasu pracujemy nad tranzystorem, który bazuje na niedomieszkowanym InSb (czystej substancji antymonku indu), więc skonstruowanie takiego urządzenia sterowanego polem magnetycznym wydaje się naturalnym kolejnym krokiem – uzupełnia dr inż. Hnida-Gut.
      W skład zespołu badawczego weszli naukowcy z Akademickiego Centrum Materiałów i Nanotechnologii AGH: dr inż. Katarzyna Hnida-Gut, dr inż. Antoni Żywczak, dr hab. inż. Marcin Sikora, dr inż. Marianna Marciszko-Wiąckowska oraz prof. dr hab. inż. Marek Przybylski.
      Nano Letters jest prestiżowym amerykańskim czasopismem naukowym, specjalizującym się w publikowaniu wyników badań z zakresu teorii i praktyki nanonauki i nanotechnologii.
      Cała publikacja Room-Temperature Ferromagnetism in InSb-Mn Nanowires jest dostępna tutaj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      IBM uruchomił w Nowym Jorku Quantum Computation Center, w którym znalazł się największy na świecie zbiór komputerów kwantowych. Wkrótce dołączy do nich nich 53-kubitowy system, a wszystkie maszyny są dostępne dla osób i instytucji z zewnątrz w celach komercyjnych i naukowych.
      Quantum Computation Center ma w tej chwili ponad 150 000 zarejestrowanych użytkowników oraz niemal 80 klientów komercyjnych, akademickich i badawczych. Od czasu, gdy w 2016 roku IBM udostępnił w chmurze pierwszy komputer kwantowy, wykonano na nim 14 milionów eksperymentów, których skutkiem było powstanie ponad 200 publikacji naukowych. W związku z rosnącym zainteresowaniem obliczeniami kwantowymi, Błękity Gigant udostępnił teraz 10 systemów kwantowych, w tym pięć 20-kubitowych, jeden 14-kubitowy i cztery 5-kubitowe. IBM zapowiada, że w ciągu miesiąca liczba dostępnych systemów kwantowych wzrośnie do 14. Znajdzie się wśród nich komputer 53-kubitowy, największy uniwersalny system kwantowy udostępniony osobom trzecim.
      Nasza strategia, od czasu gdy w 2016 roku udostępniliśmy pierwszy komputer kwantowy, polega na wyprowadzeniu obliczeń kwantowych z laboratoriów, gdzie mogły z nich skorzystać nieliczne organizacje, do chmur i oddanie ich w ręce dziesiątków tysięcy użytkowników, mówi Dario Gil, dyrektor IBM Research. Chcemy wspomóc rodzącą się społeczność badaczy, edukatorów i deweloperów oprogramowania komputerów kwantowych, którzy dzielą z nami chęć zrewolucjonizowania informatyki, stworzyliśmy różne generacje procesorów kwantowych, które zintegrowaliśmy w udostępnione przez nas systemy kwantowe.
      Dotychczas komputery kwantowe IBM-a zostały wykorzystane m.in. podczas współpracy z bankiem J.P. Morgan Chase, kiedy to na potrzeby operacji finansowych opracowano nowe algorytmy przyspieszające pracę o całe rzędy wielkości. Pozwoliły one na przykład na osiągnięcie tych samych wyników dzięki dostępowi do kilku tysięcy przykładów, podczas gdy komputery klasyczne wykorzystujące metody Monte Carlo potrzebują milionów próbek. Dzięki temu analizy finansowe mogą być wykonywane niemal w czasie rzeczywistym. Z kolei we współpracy z Mitsubishi Chemical i Keio University symulowano początkowe etapy reakcji pomiędzy litem a tlenem w akumulatorach litowo-powietrznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze IBM-a postawili sobie ambitny cel. Chcą co roku dwukrotnie zwiększać wydajność komputerów kwantowych tak, by w końcu były one szybsze lub bardziej wydajne niż komputery klasyczne. Podczas tegorocznych targów CES IBM pokazał przełomowe urządzenie: IBM Q System One, pierwszy komputer kwantowy, który ma być gotowy do komercyjnego użytku.
      Celem IBM-a jest coś, co nazywają „Quantum Advantage” (Kwantowa przewaga). Zgodnie z tym założeniem komputery kwantowe mają zyskać „znaczną” przewagę nad komputerami klasycznymi. Przez „znaczną” rozumie się tutaj system, który albo będzie setki lub tysiące razy szybszy od komputerów kwantowych, albo będzie wykorzystywał niewielki ułamek pamięci potrzebny maszynom kwantowym lub też będzie w stanie wykonać zadania, jakich klasyczne komputery wykonać nie są.
      Wydajność komputera kwantowego można opisać albo za pomocą tego, jak sprawują się poszczególne kubity (kwantowe bity), albo też jako ogólną wydajność całego systemu.
      IBM poinformował, że Q System One może pochwalić się jednym z najniższych odsetków błędów, jakie kiedykolwiek zmierzono. Średni odsetek błędów na dwukubitowej bramce logicznej wynosi mniej niż 2%, a najlepszy zmierzony wynik to mniej niż 1%. Ponadto system ten jest bliski fizycznemu limitowi czasów koherencji, który w w przypadku Q System One wyniósł średnio 73 ms.To oznacza, że błędy wprowadzane przez działanie urządzenia są dość małe i zbliżamy się do osiągnięcia minimalnego możliwego odsetka błędów, oświadczyli badacze IBM-a.
      Błękitny Gigant stworzył też Quantum Volume, system pomiaru wydajności komputera kwantowego jako całości. Bierze on pod uwagę zarówno błędy na bramkach, błędyh pomiarów czy wydajność kompilatora. Jeśli chcemy osiągnąć Quantum Advantage w latach 20. XXI wieku, to każdego roku wartość Quantum Volume musi się co najmniej podwajać, stwierdzili badacze. Na razie udaje im się osiągnąć cel. Wydajność pięciokubitowego systemu Tenerife z 2017 roku wynosiła 4. W 2018 roku 20-kubitowy system IBM Q osiągnął w teście Quantum Volume wynik 8. Najnowszy zaś Q System One nieco przekroczył 16.
      Sądzimy, że obecnie przyszłość komputerów to przyszłość komputerów kwantowych, mówią specjaliści z IBM-a.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      IBM poinformował o podpisaniu porozumienia, w ramach którego Błękitny Gigant przejmie znanego producenta jednej z dystrybucji Linuksa, firmę Red Hat. Transakcja będzie warta 34 miliardy dolarów. Jeśli do niej dojdzie będzie to trzecia największa w historii akwizycja na rynku IT.
      Umowa przewiduje, że IBM wykupi akcje Red Hata, płacąc za każdą z nich 190 dolarów. Na zamknięciu ostatniej sesji giełdowej przed ogłoszeniem transakcji akcje Red Hata kosztowały 116,68 USD.
      Przejęcie Red Hata zmieni zasady gry. Całkowicie zmieni rynek chmur obliczeniowych, mówi szef IBM-a Ginni Rometty. "IBM stanie się największym na świecie dostawcą dla hybrydowych chmur i zaoferuje przedsiębiorcom jedyną otwartą architekturę chmur, dzięki której klient będzie mógł uzyskać z niej maksimum korzyści", dodał. Zdaniem menedżera obenie większość firm wstrzymuje się z rozwojem własnych chmur ze względu na zamknięte architektury takich rozwiązań.
      Jeszcze przed kilku laty IBM zajmował się głównie produkcją sprzętu komputerowego. W ostatnim czasie firma zdecydowanie weszła na takie rynki jak analityczny czy bezpieczeństwa. Teraz ma zamiar konkurować z Microsoftem, Amazonem czy Google'em na rynku chmur obliczeniowych.
      Po przejęciu Red Hat będzie niezależną jednostką zarządzaną przez obecnego szefa Jima Whitehursta i obecny zespół menedżerów. To ważny dzień dla świata open source. Doszło do największej transakcji w historii rynku oprogramowania i bierze w tym udział firma zajmująca się otwartym oprogramowaniem. Tworzymy historię, dodał Paul Cormier, wiceprezes Red Hata.
      Obecnie Red Hat ma siedziby w 35 krajach, zatrudnia około 12 000 osób je jest jednym z największych oraz najbardziej znanych graczy na rynku open source. W roku 2018 zysk firmy wyniósł 259 milionów dolarów czy przychodach rzędu 2,9 miliarda USD. Dla porównania, w 2017 roku przychody IBM-a zamknęły się kwotą 79 miliardów dolarów, a zysk to 5,8 miliarda USD.
      Na przejęcie muszą się jeszcze zgodzić akcjonariusze Red Hata oraz odpowiednie urzędy antymonopolowe.

      « powrót do artykułu
×
×
  • Create New...