Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Badanie włosów dostarcza kolejne wskazówki co do zaginionej ekspedycji

Rekomendowane odpowiedzi

Analiza włosów jednego z członków zaginionej ekspedycji Johna Franklina do Arktyki z 1845 r. potwierdziła, że zatrucie ołowiem to tylko jeden z wielu czynników przyczyniających się do zgonu załogi (nie była to główna przyczyna).

Antropolodzy z McMaster University zbadali próbki włosów, pobrane ze szkieletu szkockiego lekarza i naukowca Henry'ego Goodsira. Dzięki temu, że włosy rosną ok. 1 cm na miesiąc, naukowcy mogli analizować zmiany w ekspozycji Goodsira na ołów w ciągu ostatnich tygodni życia.

Autorzy publikacji z The Journal for Archaeological Science: Reports porównali stężenie ołowiu w 3 cm włosa; ten odcinek odpowiadał 3-miesięcznemu okresowi przed zgonem, który nastąpił między wrześniem 1846 a początkiem 1847 r.

Kanadyjczycy przeprowadzili też badania izotopowe, by wskazać możliwe źródła ołowiu (w grę wchodziły m.in. ołowiane puszki z jedzeniem, leki i rury). Potwierdzono, że Goodsir był wystawiony na oddziaływanie podobnych lub takich samych źródeł ołowiu, co inne ofiary znalezione na Wyspie Króla Williama i Wyspie Beecheya.

Poziomy ołowiu okazały się wysokie jak na dzisiejsze standardy (73,3–84,4 ppm). Szacowane stężenia Pb we krwi (~53,6–61,3 μg/dL) sugerują jednak, że choć wysoka, ekspozycja na ołów mogła nie wystarczyć do pogorszenia objawów fizycznych i psychicznych. Przypieczętowała po prostu nieuniknione.

Skądinąd nasze analizy pokazują, jak duża była ekspozycja na ołów w przemysłowej Brytanii. W owym czasie ludzie mogli spożyć ołów ze wszystkim, np. pokarmem, winem i lekami - podkreśla Michael Inskip.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inspirowany naturą, a konkretne włosami w nosie, filtr do powierza sprawuje się znacznie lepiej niż dotychczas stosowane rozwiązania. Urządzenie opracowane przez naukowców z Korei zużywa znacznie mniej energii dzięki wykorzystaniu naturalnego przepływu powietrza, a jego czas życia jest nawet 3-krotnie dłuższy niż rozwiązań konwencjonalnych.
      Standardowe filtry powietrza wychwytują zanieczyszczenia dzięki słabym siłom adhezji (siłom van der Waalsa). Często są one zbyt słabe by filtr przechwycił i utrzymał niewielkie zanieczyszczenia.
      Zespół profesora Sanghyuka Wooha z Chung-Ang University poinformował na łamach Nature o znalezieniu rozwiązania problemu. Koreańczycy stworzyli filtr o nazwie PRO (particle removing oil-coated), który inspirowany jest sposobem, w jaki włosy w nosie przechwytują zanieczyszczenia. Nowatorski filtr pokryty jest niewielkimi polimerowymi włoskami, które zostały spryskane olejem o składzie chemicznym podobnym do składu włosków. Dzięki temu podobieństwu olej silnie i równomiernie przylega do włosków. Zapobiega to sklejaniu się włosków, dzięki czemu przepływ powietrza nie zostaje zakłócony.
      Eksperymenty dowiodły, że takie rozwiązanie wyłapuje od 10 do 30 procent więcej zanieczyszczeń niezależnie od rozmiaru i nie wymaga przy tym znaczącego zwiększania ciśnienia, by powietrze przepływało przez filtr. To jednak nie jedyne zalety PRO. O ile konwencjonalne filtry mogą być mniej skuteczne lub mogą uwalniać przechwycone zanieczyszczenia, gdy większy się prędkość przepływu powietrza lub zmieni jego kierunek, problemy takie nie występują w PRO. Nie ma więc tutaj problemu z wtórnym zanieczyszczeniem powietrza przez filtr. PRO można stosować w nietypowych miejscach, tam, gdzie wymuszony przepływ powietrza stanowiłby problem, na przykład w miejscach przeznaczonych do palenia na zewnątrz budynków czy też w tunelach metra. Filtr będzie korzystał z naturalnego przepływu powietrza, niezależnie od kierunku jego ruchu.
      Jakby jeszcze zalet było mało, filtr można umyć i używać ponownie. Po umyciu wystarczy bowiem spryskać go ponownie olejem, by odzyskał swoją wydajność. W ten sposób wydłużymy czas pracy filtra i zmniejszymy liczbę odpadów.
      Nowatorski filtr został przetestowany w warunkach rzeczywistych. Przechwycił więcej zanieczyszczeń, pracował dwukrotnie dłużej niż konwencjonalne filtry, a ilość energii elektrycznej zużytej przez system filtrujący zmniejszyła się o 27%.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chrysopoeia to używany przez alchemików termin na transmutację (przemianę) ołowiu w złoto. Alchemicy zauważyli, że tani i powszechnie występujący ołów ma podobną gęstość do złota i na tej podstawie próbowali opracować metodę zamiany jednego materiału w drugi. Po wielu wiekach badań i rozwoju nauki ludzkość dowiedziała się, że ołów i złoto to różne pierwiastki i metodami chemicznymi nie uda się zamienić jednego w drugi.
      Dopiero na początku XX wieku okazało się, że pierwiastki mogą zmieniać się w inne, na przykład drogą rozpadu radioaktywnego, fuzji jądrowej czy też można tego dokonać bombardując je protonami lub neutronami. W ten sposób dokonywano już w przeszłości zamiany ołowiu w złoto.
      Teraz w eksperymencie ALICE w Wielkim Zderzaczu Hadronów zarejestrowany nowy mechanizm transmutacji ołowiu w złoto. Doszło do niej podczas bardzo bliskiego minięcia się atomów ołowiu. W LHC naukowcy zderzają ze sobą jądra ołowiu, uzyskując plazmę kwarkowo-gluonową. Jednak interesują ich nie tylko bezpośrednie zderzenia jąder atomowych. Z punktu widzenia fizyki niezwykle ciekawe są też sytuacje, gdy do zderzeń nie dochodzi, ale jądra mijają się w niewielkiej odległości. Intensywne pola elektromagnetyczne otaczające jądra mogą prowadzić do interakcji, które są przedmiotem badań.
      Ołów, dzięki swoim 82 protonom, ma wyjątkowo silne pole elektromagnetyczne. Co więcej w Wielkim Zderzaczu Hadronów jądra ołowiu rozpędzane są do 99.999993% prędkości światła, co powoduje, że linie ich pola elektromagnetycznego zostają ściśnięte, przypominając naleśnik. Układają się poprzecznie do kierunku ruchu, emitując krótkie impulsy fotonów. Często dochodzi wówczas do dysocjacji elektromagnetycznej, gdy wskutek interakcji z fotonem w jądrze zachodzi oscylacja, w wyniku której wyrzucane są z niego protony lub neutrony. By w ten sposób ołów zmienił się w złoto (które posiada 79 protonów), jądro ołowiu musi utracić 3 protony.
      To niezwykłe, że nasz detektor jest stanie analizować zderzenia, w których powstają tysiące cząstek, a jednocześnie jest tak czuły, że wykrywa procesy, w ramach których pojawia się zaledwie kilka cząstek. Dzięki temu możemy badać elektromagnetyczną transmutację jądrową, mówi rzecznik prasowy eksperymentu ALICE, Marco Van Leeuwen.
      Uczeni wykorzystywali kalorymetry do pomiarów interakcji fotonów z jądrami, w wyniku których dochodziło do emisji 0, 1, 2 lub 3 protonów z towarzyszącym co najmniej 1 neutronem. W ten sposób jądra ołowiu albo pozostawały jądrami ołowiu, albo zamieniały się w tal, rtęć lub złoto.
      Złoto powstawało rzadziej niż tal czy rtęć. Maksymalne tempo jego wytwarzania wynosiło około 89 000 jąder złota na sekundę. Analiza danych z ALICE wykazała, że w całym LHC w latach 2015–2018 powstało 86 miliardów atomów złota. Współcześni fizycy są więc bardziej skuteczni niż alchemicy. Podobnie jednak jak oni, nie obsypią swoich władców złotem. Te 86 miliardów atomów to zaledwie 29 pikogramów (2,9x10-11 grama).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA pokazała pierwsze zdjęcia i ujawniła wyniki wstępnej analizy próbek asteroidy Bennu, które trafiły niedawno za sprawą misji OSIRIS-REx. Badania pokazały, że Bennu zawiera bardzo dużo węgla i wody, co sugeruje, że w próbkach mogą znajdować się składniki, dzięki którym na Ziemi istnieje życie. Próbki dostarczone przez OSIRIS-REx to największa ilość fragmentów asteroidy bogatego w węgiel, jaka kiedykolwiek została przywieziona na Ziemię. Pozwolą one nam oraz przyszłym pokoleniom prowadzić prace nad początkiem życia na naszej planecie, stwierdził dyrektor NASA Bill Nelson.
      Celem misji OSIRIS-REx było przywiezienie na Ziemię 60 gramów materiału. Misja padła jednak ofiarą własnego sukcesu, próbek pobrano więcej i już w przestrzeni kosmicznej pojawiły się problemy. Przez większą niż przewidywano ilość próbek, proces rozładowywania się opóźnił. W ciągu pierwszych dwóch tygodni naukowcy dokonali szybkiej analizy za pomocą skaningowego mikroskopu elektronowego, badań w podczerwieni, rozpraszania promieni rentgenowskich i analizy chemicznej pierwiastków. Wykorzystali też tomografię komputerową do stworzenia trójwymiarowych modeli komputerowych próbek. Już te wczesne badania pokazały wysoką zawartość węgla i wody.
      Bardziej szczegółowe analizy potrwają kolejne dwa lata. Co najmniej 70% próbek Bennu będzie przechowywanych w Johnson Space Center na potrzeby przyszłych badań. Będą one udostępniane też uczonym z zagranicy. Już teraz wiadomo, że ich analizą zainteresowanych jest ponad 200 obcokrajowców.
      Asteroida Bennu ma około 4,5 miliarda lat. Jedna z hipotez dotyczących początków życia na Ziemi mówi, że to właśnie tego typu i podobne obiekty przyniosły na naszą planetę składniki, potrzebne do jego powstania. Dlatego naukowcy mają nadzieję, że badając próbki pobrane bezpośrednio z asteroid pozwolą nam zajrzeć w przeszłość i dowiedzieć się, w jaki sposób powstało życie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Politechniki Gdańskiej, wraz z uczonymi z Danii i Brazylii, pracują nad nową generacją nieszkodliwych dla środowiska materiałów piezoelektrycznych, które mogą posłużyć np. do budowy biokompatybilnych przetworników ultradźwiękowych nowej generacji. Prace koncentrują się wokół niedawno odkrytego podobnego do piezoelektryczności zjawiska elektrostrykcji.
      Piezoelektryczność polega na przekształcaniu energii mechanicznej w elektryczną i odwrotnie. Na co dzień korzystamy z wielu urządzeń piezoelektrycznych, od zapalarek, przez zegarki kwarcowe po głośniki. Piezoelektryki znajdziemy m.in. w głowicach USG czy wagach cyfrowych.
      Koncepcja działania piezoelektryków jest prosta, jednak poważnym problemem, z którym nauka zmaga się od ponad 100 lat, jest znalezienie nieszkodliwych dla środowiska materiałów wykazujących duży efekt piezoelektryczny. W piezoelektrykach powszechnie stosuje się bowiem ołów.
      Przed około 10 laty odkryto podobny do piezoelektryczności efekt elektrostrykcji i okazało się, że w tlenku ceru jest on znacznie większy niż zjawisko piezolektryczne w większości materiałów. Dlatego też profesor Sebastian Molin z Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej pracuje nad bazującymi na tlenku ceru bezołowiowymi biokompatybilnymi materiałami elektrostyrykcyjnymi. Zadaniem mojego zespołu jest wytworzenie nowych materiałów na bazie tlenku ceru o określonych właściwościach, natomiast nasi duńscy partnerzy będą badali je pod kątem ich możliwości piezoelektrycznych oraz zastosowania w praktycznych układach generacyjnych. Nasza grupa będzie stosować różne parametry syntezy materiałów, różne domieszki i modelować te materiały, by uzyskać najlepsze efekty, mówi uczony.
      Badania odbywają się w ramach międzynarodowego projektu m-era.net, a partnerami Polaków są naukowcy z Duńskiego Uniwersytetu Technologicznego, CTS Ferroperm oraz Universidade Federal do ABC.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z okazji tłustego czwartku naukowcy i studenci z Akademii Górniczo-Hutniczej (AGH) w Krakowie przebadali pączki pod mikroskopem, a także za pomocą tomografu, kamery termowizyjnej czy rezonansu. Dzisiejsza tradycja stała się dobrym pretekstem do zaprezentowania działalności i wyposażenia licznych laboratoriów uczelni.
      W AGH działa łącznie ponad 800 laboratoriów. Na 16 wydziałach oraz w jednostkach pozawydziałowych naukowcy pracują na co dzień z unikatową, często w skali kraju czy Europy, aparaturą - podkreślono w komunikacie prasowym.
      AGH zaprezentowała serię zdjęć. Na jednym z nich pokazano np. wnętrze pączka w 400-krotnym powiększeniu (obserwacje skaningowym mikroskopem elektronowym FEI Quanta 200 FEG). Ciekawie prezentuje się zdjęcie wykonane za pomocą mikroskopu polaryzacyjnego do obserwacji w świetle przechodzącym i odbitym. Najłatwiej rozpoznać słodki obiekt badań na obrazie tomograficznym.
      Niecodzienne badania pączka przeprowadzono m.in. w Laboratorium Mikro i Nano Tomografii, Laboratorium Zaawansowanych Metod Inżynierii Naftowej i Energii, Laboratorium Tomografii Komputerowej czy Laboratorium Analizy Biomarkerów.
      Fotorelację z eksperymentu można zobaczyć na profilu AGH na Facebooku (jak widać, nie ograniczono się do badań wyłącznie pączków o tradycyjnej formie, bo pojawiły się również pączki z dziurką).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...