Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Turbulencje to kluczowy czynnik fizyczny, który sprzyja produkcji funkcjonalnych płytek krwi z ludzkich indukowanych pluripotencjalnych komórek macierzystych (ang. human induced pluripotent stem cells, hiPSCs) na dużą skalę.

Naukowcy odkryli, że gdy uzyskane z hiPSCs megakariocyty wystawiło się w bioreaktorze na oddziaływanie turbulentnej energii, stymulowało je to wyprodukowania 100 mld płytek krwi. Gdy płytki te przetoczono 2 modelom zwierzęcym, sprzyjały one krzepnięciu i zapobiegały krwawieniu tak samo skutecznie, jak płytki od ludzkich dawców.

Autorzy publikacji z pisma Cell podkreślają, że do problemu niezaspokajania zapotrzebowania na krew/produkty krwiopochodne przyczynia się krótki czas przydatności do wykorzystania niektórych jej komponentów; w USA za czas przydatności płytek uznaje się okres jedynie 5 dni.

Szukając sposobów na rozwiązanie tego problemu, specjaliści zwrócili się właśnie do hiPSCs. W przypadku tej techniki epigenetycznie przeprogramowuje się komórki krwi bądź skóry. Uzyskane komórki macierzyste o cechach komórek embrionalnych są następnie przekształcane w wyspecjalizowane komórki. Niestety, dotąd próby pozyskiwania płytek (trombocytów) z megakariocytów wyprodukowanych na drodze hiPSCs nie pozwalały na osiągnięcie skali nadającej się do zastosowań klinicznych.

W pewnym momencie Koji Eto z Uniwersytetu w Kioto i jego współpracownicy zauważyli jednak, że gdy megakariocyty wyprodukowane dzięki hiPSCs są wytrząsane w zlewce, a nie "leżą" spokojnie w szalce Petriego, wytwarzają więcej płytek. To zasugerowało, że produkcji trombocytów sprzyja stres wywołany poziomym wytrząsaniem w ciekłym układzie.

Po przełomowym odkryciu Japończycy prowadzili badania w bioreaktorze i nowym systemie mikroprzepływowym. Niestety, urządzenia te dawały mniej niż 20 płytek na megakariocyt.

By zidentyfikować idealne warunki do powstawania płytek, akademicy przeprowadzili badania obrazowe mysiego szpiku kostnego. Eksperymenty pokazały, że megakariocyty uwalniają płytki tylko podczas ekspozycji na turbulentny przepływ krwi. Okazało się, że testowane wcześniej bioreaktor i system mikroprzepływowy nie zapewniały wystarczającej energii turbulencji.

Odkrycie kluczowej roli turbulencji w wytwarzaniu płytek wiele wnosi do wcześniejszych badań. Pokazuje bowiem, że bardzo istotne w tym procesie są naprężenia ścinające związane z przepływem krwi. Kluczowe dla naszego odkrycia było [więc] połączenie technologii iPS ze zrozumieniem dynamiki płynów.

Przetestowawszy szereg urządzeń, Eto i inni stwierdzili, że produkcja dobrej jakości płytek na masową skalę jest możliwa dzięki bioreaktorowi VerMES. System ten składa się z 2 ustawionych w poziomie owalnych mieszadeł, które generują stosunkowo duże turbulencje, przemieszczając się w górę i w dół cylindra. Przy optymalnym poziomie energii turbulencji i naprężeń ścinających megakariocyty uzyskane dzięki hiPSCs generowały 100 mld płytek.

Gdy pozyskane w ten sposób płytki przetoczono 2 modelom zwierzęcym małopłytkowości (królikom i myszom), sprawowały się one podobnie jak trombocyty pozyskane od ludzkich dawców.

Obecnie Eto pracuje nad ulepszeniem podejścia (chodzi m.in. o zautomatyzowany protokół i obniżenie kosztów produkcji). Japończycy chcą też uzyskiwać pozbawione antygenów HLA płytki uniwersalne. Spodziewamy się, że testy kliniczne zaczną się w ciągu roku-2 lat.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

×
×
  • Create New...