Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Kwantowa nielokalność w zimnych gazach atomowych
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Co łączy uniwersyteckie laboratorium w Chicago, gdzie naukowcy schładzają atomy do temperatury bliskiej zeru absolutnemu, uzyskując egzotyczny stan materii, z widocznymi przez okna drzewami uzyskującymi energię z fotosyntezy? Pozornie nic, ale najnowsze badania prowadzone na University of Chicago sugerują, że to, co robią naukowcy i to, co robią drzewa, może być bardziej podobne, niż nam się wydaje. Uczeni poinformowali właśnie na łamach PRX Energy, że znaleźli podobieństwa na poziomie atomowym pomiędzy fotosyntezą a kondensatami ekscytonowymi, niezwykłym stanem materii, który pozwala na bezstratne przesyłanie energii przez materiał. Odkrycie to może prowadzić do znacznego udoskonalenia elektroniki.
O ile nam wiadomo, nikt wcześniej nie zauważył tych podobieństw, a to, co odkryliśmy jest niezwykle ekscytujące, mówi współautor badań, profesor David Mazziotti.
Laboratorium Mazziottiego specjalizuje się w modelowaniu niezwykle złożonych interakcji pomiędzy atomami i molekułami. Przed trzema laty wykazano tam na przykład, że możliwe jest istnienie podwójnego kondensatu fermionów i ekscytonów, a spostrzeżenie to może zrewolucjonizować obrazowanie medyczne.
W ostatnim czasie Mazziotti oraz Anna Schouten i LeeAnn Sager-Smith modelowali zjawisko fotosyntezy na poziomie molekularnym. Gdy foton ze Słońca uderza w liść, dochodzi do wyładowania w specjalnej molekule. Energia tego wyładowania uwalnia elektron. Następnie elektron ten, wraz z dziurą, w której był, wędrują przez liść, przenosząc energię do miejsca, w którym rozpoczyna ona reakcję chemiczną wytwarzającą cukry odżywiające roślinę. Ta wędrująca para elektron-dziura zwana jest ekscytonem. Gdy naukowcy stworzyli model przemieszczania się wielu takich ekscytonów, zauważyli znany sobie wzorzec. Okazało się, że ekscytony w liściu czasem zachowują się bardzo podobnie do kondensatu Bosego-Einsteina, zwanego czasem piątym stanem materii.
W kondensacie Bosego-Einsteina cząstki zachowują się jak jedna cząstka. Dzięki temu w materiale takim energia może być przemieszczana bez strat. Zaobserwowanie takiego stanu materii podczas fotosyntezy to olbrzymie zaskoczenie, gdyż dotychczas kondensat Bosego-Einsteina obserwowano w bardzo niskich temperaturach. Naukowcy mówią, że to tak, jakbyśmy obserwowali kostki lodu tworzące się w filiżance gorącej kawy. Fotosynteza zachodzi w systemach w temperaturze pokojowej. Co więcej, struktura takich systemów jest nieuporządkowana. To warunki całkowicie odmienne od dziewiczych krystalicznych materiałów i niskich temperatur, w jakich uzyskuje się kondensaty elektronowe, mówi Schouten.
Zaobserwowane zjawisko nie obejmuje całego systemu, w którym dochodzi do fotosyntezy. Bardziej przypomina pojawiające się „wyspy” kondensatu. To jednak wystarczy, by zwiększyć transfer energii w systemie, wyjaśnia Sager-Smith. Z modelu wynika, że te „wyspy” podwajają wydajność całego procesu.
Profesor Mazziotti jest zadowolony z odkrycia i mówi, że otwiera ono nowe możliwości w dziedzinie syntezy materiałów na potrzeby technologii przyszłości. Idealny kondensat ekscytonowy to stan bardzo wrażliwy i wiele warunków musi być spełnionych, by zaistniał. Ale jeśli myślimy o praktycznych zastosowaniach, to nie potrzebujemy ideału. To ekscytujące obserwować zjawisko, które zwiększa wydajność transferu energii, ale zachodzi w temperaturze pokojowej, cieszy się uczony.
Naukowiec zauważa jeszcze jedną ważną rzecz. Zachodzące w procesie fotosyntezy interakcje pomiędzy atomami a molekułami są tak złożone, że z ich symulowaniem nie radzą sobie nawet najpotężniejsze superkomputery. Dlatego też podczas badania tych zjawisk dokonuje się uproszczeń. Najnowsze odkrycie pokazuje, że niektórych elementów upraszczać nie należy. Sądzimy, że lokalne korelacje elektronów muszą pozostać, byśmy mogli badać, jak działa natura.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy udało się zademonstrować działanie interferometrii atomowej w przestrzeni kosmicznej. Osiągnięcie niemieckich naukowców oznacza, że interferometry atomowe, niezwykle precyzyjne urządzenia pomiarowe, mogą zostać wykorzystane poza Ziemią, np. na Międzynarodowej Stacji Kosmicznej. Posłużyć tam mogą chociażby do pomiarów pola grawitacyjnego Ziemi czy wykrywania fal grawitacyjnych.
Stworzyliśmy technologiczne podstawy do wykorzystania interferometrii atomowej na pokładzie rakiety meteorologicznej i wykazaliśmy, że prowadzenie tego typu eksperymentów jest możliwe nie tylko na Ziemi ale i w kosmosie, mówi profesor Patrick Windpassinger z Instytutu Fizyki z Uniwersytetu Jana Gutenberga w Moguncji.
Prace prowadzili naukowcy z różnych uczelni i instytucji badawczych, a zespołem kierowali specjaliści z Uniwersytetu Hanowerskiego. W styczniu 2017 roku wystrzelili oni misję MAIUS-1. Jest to pierwsza w historii misja, w czasie której kondensat Bosego-Einsteina był generowany w przestrzeni kosmicznej. Ten specjalny stan materii uzyskuje się schładzając atomy – w tym przypadku atomy rubidu – do temperatur bliskich zeru absolutnemu. Ta ultrazimna materia stała się dla nas obiecującym punktem wyjścia do interferometrii atomowej, mówi Windpassinger. Niskie temperatury odgrywają tutaj kluczową rolę, gdyż pozwalają na prowadzenie bardzo precyzyjnych i dłuższych pomiarów.
W czasie eksperymentów wykorzystywano laser do odseparowywania od siebie atomów rubidu i tworzenia ich superpozycji. Możliwe było w ten sposób wytworzenie różnych wzorców interferencji pomiędzy atomami, co z kolei można wykorzystać do badania sił wpływających na atomy, w tym do badania grawitacji.
Misja MAIUS-1 przyniosła więc potwierdzenie słuszności opracowanej koncepcji oraz jej technicznej wykonalności. To zaś oznacza, że możliwe będzie wykorzystanie interferometru atomowego utworzonego z kondensatu Bosego-Einsteina do prowadzenia różnych badań i pomiarów.
W najbliższym czasie niemieccy naukowcy chcą sprawdzić, czy taki interferometr zda egzamin. W roku 2022 wystartuje MAIUS-2, a w roku 2023 – MAIUS-3. Uczeni chcą użyć interferometrów stworzonych nie tylko z atomów rubidu, ale też potasu. Porównując przyspieszenie podczas spadku swobodnego pomiędzy tymi dwoma typami atomów można będzie przetestować Einsteinowską zasadę równoważności z niedostępną dotychczas precyzją.
W przyszłości tego typu eksperymenty można będzie prowadzić na satelitach lub Międzynarodowej Stacji Kosmicznej, gdzie prawdopodobnie uda się do tego wykorzystać planowane właśnie BECCAL czyli Bose Einstein Condensate and Cold Atom Laboratory. W tym wypadku precyzja pomiarów nie będzie ograniczona krótkim czasem swobodnego spadku rakiety, wyjaśnia doktor Andre Wenzlawski z grupy badawczej Windpassingera.
Szczegóły badań opisano na łamach Nature Communications.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na fińskim Aalto University uzyskano kondensat Bosego-Einsteina stworzony ze światła i plazmonów powierzchniowych. Ich wzajemne oddziaływanie tworzy polarytony plazmonów powierzchniowych.
Przed niemal stu laty Einstein i Bose przewidzieli, że prawa mechaniki kwantowej mogą spowodować, iż duże grupy cząstek mogą zachowywać się tak, jakby były jedną cząstką. Zjawisko to nazwano kondensacją Bosego-Einsteina. Pierwszy kondensat tego typu udało się uzyskać dopiero w 1995 roku.
Kondensaty uzyskiwano już wielokrotnie i w różnych konfiguracjach, jednak naukowcy ciągle nad nimi pracują. Chcą bowiem uzyskiwać je szybciej, w wyższych temperaturach i mniejszej skali. Mają bowiem nadzieję na praktyczne ich wykorzystanie. Z kondensatu Bosego-Einsteina można by stworzyć ekstremalnie małe źródło światła, które niezwykle szybko będzie przetwarzało dane.
Fińscy uczeni poinformowali o stworzeniu kondensatu Bosego-Einsteina ze światła i elektronów poruszających się na powierzchni złotych nanopręcików. W przeciwieństwie do większości wcześniej uzyskiwanych kondensatów ten z Aalto, jako że złożony jest głównie ze światła, pojawia się w temperaturze pokojowej, nie trzeba całości schładzać do temperatur bliskich zera absolutnego.
Korzystając ze współczesnych metod produkcyjnych jesteśmy w stanie w łatwy sposób uzyskać macierz z nanopręcików. W ich pobliżu można skupiać światło na bardzo małych powierzchniach, mniejszych nawet od długości fali światła w próżni. Te właściwości dają nam interesujące perspektywy dla przyszłych badań i zastosowań praktycznych nowego kondensatu, mówi profesor Päivi Törmä.
Głównym problemem związanym z nowym rodzajem kondensatu jest fakt, że błyskawicznie się on pojawia i znika. Z naszych wyliczeń wynika, że czas jego życia jest liczony w pikosekundach, wyjaśnia doktorant Antti Moilanen. Naukowcy musieli więc wymyślić sposób na udowodnienie istnienia czegoś, co znika po bilionowych części sekundy. Wpadli na pomysł, by zmusić kondensat do poruszania się. Kondensat powoduje, że złote nanopręciki emitują światło. Obserwując to światło możemy badać zmiany kondensatu w czasie, dodaje Tommi Hakala. Emitowane światło jest podobne do światła laserowego. Możemy zmieniać odległości pomiędzy nanopręcikami, co pozwala nam na zdecydowanie, czy mamy do czynienia z kondensacją Bosego-Einsteina czy z pojawieniem się zwykłego światła laserowego. To są dwa bardzo zbliżone zjawiska fizyczne, a kluczowym jest możliwość odróżnienia ich od siebie. Oba nadają się też do odmiennych zastosowań, mówi profesor Törmä.
Światło laserowe i kondensacja Bosego-Einsteina dają jasne promienie, jednak koherencje światła mają różne właściwości. To zaś wpływa na sposób, w jaki można manipulować światłem w zależności od wymaganych zastosowań. Kondensat pozwala na uzyskiwanie niezwykle krótkich impulsów światła, które mogą zostać wykorzystane do szybkiego przekazywania i przetwarzania informacji.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.