Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Hydrożel pomaga odzyskać kontrolę oddechu po urazie rdzenia
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na Uniwersytecie Jagiellońskim powstał materiał, który może pomóc w dobudowaniu ubytków kostnych oraz służyć jako nośnik leków na osteoporozę. Jest on dziełem naukowców z Wydziału Chemii kierowanych przez profesor Marię Nowakowską. Nowy materiał ma postać hydrożelu, który wstrzykuje się w miejscu ubytku. Następnie dochodzi do jego zestalenia w temperaturze 37 stopni Celsjusza. Hydrożel trwale przyczepia się do tkanki kostnej i pełni rolę rusztowania, na którym w naturalny sposób tworzy się nowa tkanka wypełniająca ubytek.
Hydrożel ma też dodatkową zaletę – może posłużyć jako nośnik podawanych miejscowo leków na osteoporozę. To zaś pozwala na uniknięcie ogólnoustrojowego podawania leków niosących ze sobą skutki uboczne oraz dalej możliwość aplikowania znacznie większych stężeń w bezpośrednie sąsiedztwo chorych tkanek.
Komponenty naszego hydrożelu naśladują naturalny skład tkanki kostnej. Wśród jego składników jest między innymi kolagen, kwas hialuronowy oraz chitozan, czyli polisacharyd o udowodnionych właściwościach antybakteryjnych, przeciwzapalnych i przeciwbólowych. Oprócz tego w jego skład wchodzi kluczowy składnik nieorganiczny. Jest nim syntetyzowany przez nas układ cząstek krzemionki dekorowanych hydroksyapatytem, który w hydrożelu i projektowanej terapii pełni kilka istotnych i pożytecznych funkcji. Składowe hydrożelu, po jego wstrzyknięciu, już w organizmie, wiążą się ze sobą wiązaniami kowalencyjnymi. Właściwość ta pozwala podać hydrożel nieinwazyjną drogą a cały materiał zachowuje swoją funkcjonalność, ponieważ nie ulega niekontrolowanej degradacji, opisuje działanie hydrożelu doktor Joanna Lewandowska-Łańcucka.
Naukowcy z UJ przeprowadzili już wstępne badania na modelu mysim. Wykazały one, że hydrożel nie jest toksyczny. Naukowcy zauważyli też, że miejscu wstrzyknięcia powstają włosowate naczynia krwionośne, co stanowi podstawę do obudowania się tkanki kostnej. Hydrożel ulega stopniowej powolnej degradacji. Po 60 dniach od podania wciąż były widoczne jego resztki. Z kolei podczas badań in vitro stwierdzono, że podany w hydrożelu lek jest uwalniany stopniowo, co może zwiększyć skuteczność terapii.
Pierwsze testy hydrożelu na liniach komórkowych i modelach zwierzęcych wypadły bardzo obiecująco. Na razie planujemy przeznaczyć ten materiał do projektowania terapii mniejszych ubytków kostnych, spowodowanych przede wszystkim osteoporozą, ale również różnego rodzaju urazami czy ubytków, jakie powstają na przykład w wyniku operacji neurologicznych. Materiał
powinien więc zainteresować szerokie grono lekarzy reumatologów, ortopedów, jak również neurologów i stomatologów, dodaje doktor Gabriela Konopka-Cupiał, dyrektor CITTRU – Centrum Transferu Technologii UJ.
Teraz naukowcy poszukują inwestorów, którzy wezmą udział w rozwoju wynalazku oraz zaangażują się w badania kliniczne.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed testami na organizmach leki przeciwnowotworowe są testowane na hodowlach komórek. Naukowcy starają się odtworzyć warunki panujące w ciele. Nad symulującymi tkankę guza rusztowaniami 3D dla komórek czerniaka pracuje od jakiegoś czasu doktorantka z Politechniki Wrocławskiej - mgr inż. Agnieszka Jankowska. Do ich wytworzenia używa hydrożelowego biopolimeru – alginianu sodu, polimeru pochodzenia naturalnego, pozyskiwanego z morskich wodorostów.
Naukowcy podkreślają, że gdy odpowiednio dobierze się parametry, hydrożel może mieć zbliżone właściwości do tkanki, w której zachodzi namnażanie komórek nowotworu. Oprócz tego cechuje go biokompatybilność, mała toksyczność i niska cena. Co ważne, można go też formować. Nic więc dziwnego, że często stosuje się go do tworzenia rusztowań czy nośników leków.
Odtwarzanie warunków panujących w żywych organizmach
Jest pewien paradoks w moich badaniach. Robię teraz wszystko, żeby stworzyć jak najlepsze warunki dla komórek nowotworowych. Tak by jak najszybciej się rozwijały i namnażały podobnie jak w ludzkim ciele. Wszystko po to, by potem potraktować je lekami, które – mamy nadzieję – je zniszczą i pozwolą na opracowanie spersonalizowanych terapii - mówi Jankowska.
Promotorami pracy doktorskiej mgr inż. Jankowskiej są naukowcy z PWr i Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu: dr hab. inż. Jerzy Detyna i dr hab. n. med. inż. Julita Kulbacka.
Doktorantka wyjaśnia, że przez to, że są płaskie (mają postać 2D), hodowle nie odzwierciedlają zbyt dokładnie warunków panujących w żywych organizmach. Komórki nowotworowe inaczej w nich funkcjonują. Mają ze sobą kontakt tylko na krawędziach, zmieniają swój kształt i zupełnie inaczej współpracują z sąsiadującymi komórkami, nie będąc w stanie stworzyć mikrośrodowiska - podkreślono w komunikacie prasowym uczelni.
Ma to poważne konsekwencje, ponieważ niejednokrotnie okazuje się, że leki, które w laboratorium sprawowały się bardzo dobrze, w organizmach żywych mają już niższą skuteczność. Nic więc dziwnego, że z myślą o skróceniu badań klinicznych naukowcy z różnych ośrodków dążą do badań na trójwymiarowych strukturach.
Prace nad parametrami
Rusztowanie 3D mgr inż. Jankowskiej składa się ze wspomnianego alginianu sodu, a także żelatyny i różnych innych dodatków. Doktorantka stara się ustalić odpowiednie parametry. To bardzo ważne, bo odchylenia procesu drukowania będą oddziaływać na zwartość konstrukcji czy przeżycie komórek.
[...] Uzyskanie z hydrożeli struktur o konkretnym kształcie to duże wyzwanie. Podobnie jak zagwarantowanie warunków, w których komórki nowotworowe przeżyją proces biodruku. Trzeba więc ustalić właściwe stężenie, rodzaje dodatków, wilgotność, temperaturę otoczenia i tuszu w głowicy oraz stołu drukarki, ale także m.in. prędkość druku, ciśnienie, średnicę dyszy albo igły drukującej, ścieżkę drukowania i wiele innych parametrów - wylicza Jankowska, dodając, że znalezienie właściwych parametrów wymaga czasu, to praca na lata.
W przyszłości doktorantka chce drukować za pomocą dwóch głowic drukarki naraz. Pierwszą warstwę utworzy hydrożel z lekiem przeciwnowotworowym (terapeutykiem), drugą - hydrożel z komórkami nowotworowymi.
Co po badaniach podstawowych?
[...] Gdy zakończę badania podstawowe, kolejną ścieżką badań mogłyby być próby wytworzenia struktur przepływowych. Rusztowanie, nad którym teraz pracuję, będzie strukturą stałą. Do otoczonych lekiem komórek, które znajdą się w środku, nic już więcej nie będziemy mogli dostarczyć. Natomiast struktura przepływowa mogłaby symulować cały system odprowadzania i doprowadzania krwi w organizmie, z odpowiednim ciśnieniem i w odpowiednim cyklu. Dzięki temu badania leków jeszcze lepiej oddawałyby ich działanie w naszym ciele - wskazuje badaczka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wiele terapii przeciwnowotworowych pozwala skutecznie usunąć guzy czy komórki nowotworowe. Problem jednak stanowią nowotworowe komórki macierzyste (CSC), które mogą się reprodukować i doprowadzić do nawrotu choroby. Stworzenie leków, które byłyby w stanie zidentyfikować i niszczyć CSC poprawiłoby efektywność leczenia przeciwnowotworowego.
CSC są obecne w guzach w bardzo małej liczbie, przez co trudno je odnaleźć. Dlatego też naukowcy z Uniwersytetu Hokkaido oraz japońskiego Narodowego Instytutu Badań nad Rakiem stworzyli nowatorski hydrożel, który – jak się okazało – błyskawicznie zmienia komórki nowotworowe w nowotworowe komórki macierzyste.
Żel zawiera dwie sieci polimerowe o różnych właściwościach mechanicznych. Pierwszą sieć tworzy sztywny żel polielektrolitowy, drugą zaś elastyczny naturalny żel polimerowy.
Nowatorski żel służy jako sztuczne mikrośrodowisko do wzbudzania reakcji w CSC. Główny autor badań, Shinya Tanaka mówi, że żel ten może stać się potencjalną bronią do zwalczania nowotworów i może mieć unikatowego zastosowania w medycynie regeneracyjnej.
Elastyczność żelu przypomina środowisko wymagane przez CSC, przez co może pobudzać macierzyste komórki nowotworowe do odnawiania się i tworzenia nowej generacji komórek macierzystych, co może ułatwić wykrywanie CSC, poprawić diagnostykę oraz umożliwić wytwarzanie zindywidualizowanych leków.
Naukowcy przeprowadzili testy efektywności swojego żelu. W tym celu hodowali w laboratorium linie komórek sześciu ludzkich nowotworów: mięsaka, nowotworu macicy, płuc, okrężnicy, pęcherza i mózgu. Okazało się, że zaledwie po 24 godzinach od nałożenia komórek na żel wszystkie komórki uformowały sferyczne struktury. Struktury zawierały one dużą liczbę CSC. Tymczasem w guzach pierwotnych komórki tego typu rzadko występują. Eksperyment wskazuje, że dzięki interakcji zróżnicowanych komórek nowotworowych z żelem dochodzi do ich przeprogramowania w nowotworowe komórki macierzyste.
Badacze dodatkowo zajęli się glejakiem, bardzo śmiertelnym złośliwym nowotworem mózgu. Po kontakcie z żelem komórki nowotworowe pobrane od czterech pacjentów bardzo szybko zmieniły się w CSC. Naukowcy zauważyli, że w komórkach tych doszło do bardzo intensywnej ekspresji proteiny Sox2, która odpowiada za przeprogramowywanie komórek nowotworowych. Odkrycie tego mechanizmu pozwala na lepsze zrozumienie działania żelu.
Obecnie japońscy naukowcy badają, w jaki sposób właściwości ich żelu wpływają na komórki, szczególnie zaś na tym, w jaki sposób jego właściwości chemiczne wpływają na proces przeprogramowywania komórek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na całym świecie żyją dziesiątki milionów osób, które w różnym stopniu utraciły sprawność fizyczną po urazowym uszkodzeniu mózgu. Nadzieją dla nich może być „klej do mózgu”, czyli specjalny hydrożel, opracowany w Regenerative Biosceinces Center na University of Georgia.
Twórcy hydrożelu wykazali właśnie, że nie tylko chroni on przed dalszą utratą tkanki mózgowej po poważnym urazie, ale może również pomagać w regeneracji nerwów.
Wyniki badań, opisanych na łamach Science Advances, dostarczają pierwszych wizualnych i funkcjonalnych dowodów na to, że pod wpływem „kleju do mózgu” następuje naprawa obwodów nerwowych. Nasze badania dają nam wgląd w to, jak przebiega regeneracja uszkodzonych regionów mózgu u zwierząt, przed którymi postawiono specyficzne zadania dotyczące sięgnięcia i schwytania przedmiotu, mówi profesor Lohitash Karumbaiah.
Uczony stworzył specjalny hydrożel w 2017 roku. Został on zaprojektowany tak, by naśladował strukturę i funkcję cukrów w komórkach mózgu. Żel zawiera kluczowe struktury pozwalające mu na łączenie się z czynnikiem wzrostu fibroblastów i neurotroficznym czynnikiem pochodzenia mózgowego, dwoma ważnymi białkami, które zwiększają przeżywalność i regenerację komórek mózgu po urazie.
Przeprowadzone długoterminowe badania wykazały, że po 10 tygodniach u zwierząt, u których zastosowano hydrożel "doszło do naprawy poważnie uszkodzonej tkanki mózgowej. Zwierzęta te szybciej się rehabilitowały, niż te, u których materiału tego nie stosowano".
Badania trwały 4-5 lat. Wszystko jest tak szczegółowo udokumentowane, że po przeczytaniu wszystkich zebranych przez nas informacji, każdy uwierzy, iż pojawiła się nowa nadzieja dla ludzi z poważnym uszkodzeniem mózgu, mówi Charles Latchoumane, główny autor badań, który pracuje też w centrum NeurRestore w Lozannie. Centrum to skupia się na badaniach nad odwróceniem utraty funkcji neurologicznych u ludzi cierpiących na chorobę Parkinsone oraz inne schorzenia neurologiczne, do których doszło w wyniku urazu lub udaru.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Minnesoty opracowali metodę druku 3D, która wykorzystuje technikę przechwytywania ruchu, by drukować czujniki bezpośrednio na kurczących się i rozszerzających narządach.
Warto przypomnieć, że dwa lata temu ten sam zespół nadrukował elektronikę na poruszającą się dłoń. Technikę później rozwinięto. Opracowaliśmy działający in situ system druku 3D, który oszacowuje ruch i deformacje docelowej powierzchni, by dostosować działanie urządzenia w czasie rzeczywistym - napisano w artykule opublikowanym na łamach Science Advances.
Przesuwamy granice druku 3D w rejony, o których lata temu w ogóle nie myśleliśmy - podkreśla Michael McAlpine. Druk 3D na poruszających się obiektach sam w sobie jest już wystarczająco trudny, tu zaś musimy [dodatkowo] znaleźć sposób na drukowanie na powierzchni, która odkształca się w czasie rozszerzania i kurczenia.
Eksperymenty zaczęły się od balonowatej powierzchni i specjalnej drukarki 3D. Wykorzystano markery do przechwytywania ruchu, które pozwalały urządzeniu dostosować ścieżkę wydruku do ruchów podłoża. Później przyszedł czas na zwierzęce (świńskie) płuco, które sztucznie wypełniano powietrzem. Ku uciesze naukowców, próba nadrukowania hydrożelowego czujnika naprężeń zakończyła się sukcesem. McAlpine dodaje, że w przyszłości tę samą technikę można by zastosować do drukowania 3D czujników na pompujących sercu.
[...] To duży krok naprzód w zakresie połączenia technologii druku 3D z robotami chirurgicznymi. W przyszłości druk 3D będzie [...] stanowić część większych autonomicznych systemów robotycznych.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.