Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Pigment z grzybów - obiecujący materiał półprzewodnikowy
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół ekspertów przyjrzał się bliżej zwyczajom grzebalnym w najstarszym mieście świata, Çatalhöyük. Domy w Çatalhöyük noszą ślady odbywania w nich rytuałów, w tym rytuałów pogrzebowych. Zmarli chowani byli w domach, w przypadku niektórych z nich używano pigmentów, a miejsca pochówku malowano.
Już z wcześniejszych badań wiemy o związkach pomiędzy użyciem pigmentów a rytuałami pogrzebowymi. Na Bliskim Wschodzie wykorzystanie barwników w kontekście funeralnym i architektonicznym rozpowszechniło się szczególnie w drugiej połowie IX i w VIII tysiącleciu przed Chrystusem. Nowe badania ujawniły, że w Çatalhöyük w przypadku pochówków niewielkiej liczby zmarłych użyto pigmentu.
Wydaje się, że na decyzję o samym użyciu pigmentu nie miał wpływu ani wiek, ani płeć zmarłem osoby. Jednak wszystko wskazuje na to, że użycie konkretnego koloru – cynobrowego, błękitu miedzi czy malachitu – jest już powiązane z rolą społeczną zmarłego. Prawdopodobnie stosowanie cynobru na głowę zostało zarezerwowane głównie dla mężczyzn. Cynober ma specjalne znaczenie w wielu kulturach na przestrzeni ludzkiej historii. To jaskrawo czerwony barwnik, który nie blaknie, a po podgrzaniu ma właściwości halucynogenne i uspokajające.
Wiele wskazuje na to, że miał on też specjalne znaczenie w Çatalhöyük, gdzie znaleziono go w przypadku niewielkiej liczby pochówków i malunków naściennych. Naukowcy przypuszczają, że obecność cynobru jedynie na kościach czołowych i skroniowych zmarłych oraz obecność fitolitów może sugerować obecność opasek na głowę, które zmarli mogli nosić również za życia. Tutaj warto przypomnieć, że np. etniczni mieszkańcy Vanuatu uważają opaski na głowę za wartościowe przedmioty i mogą je nosić tylko wysoko postawieni w społeczności mężczyźni. Z kolei w Chinach epoki neolitu i brązu cynober był zarezerwowany dla pochówków elit. Oczywiście to daleko posunięte porównania, jednak obecność cynobru może wskazywać na osoby o wysokim statusie społecznym. Trzeba też zauważyć, że wciąż prowadzone w Çatalhöyük badania genetyczne nie wykazały dotychczas pokrewieństwa ani pomiędzy zmarłymi zdobionymi cynobrem, ani zmarłymi pochowanymi w tym samym domu. To zaś może wskazywać, że status społeczny w Çatalhöyük się nabywało, a nie dziedziczyło. Jednak na razie jest zbyt wcześnie, by wysuwać ostateczne wnioski, gdyż badania DNA przeprowadzono na zbyt małej próbce osób.
Drugi widoczny trend w zwyczajach funeralnych to wykorzystanie kolorów niebieskiego (błękit miedzi) i zielonego (malachit), w pochówkach kobiet i nastolatków. najstarsze znane nam przykłady wykorzystania tych kolorów pochodzą z późnego okresu kultury natufijskiej sprzed ok. 11 000 lat. Kolory te kojarzone są czasem z płodnością i dojrzałością, to zaś może mieć też dodatkowy związek z rozwojem społeczeństw rolniczych.
W Çatalhöyük znaleziono też zbiorniki na pigmenty, narzędzia do ich nakładania oraz ślady ich produkcji.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy informują o zidentyfikowaniu najstarszego miejsca, w którym człowiek zanieczyścił rtęcią siebie i środowisko naturalne. Zespół specjalistów przebadał kości 370 osób z 50 grobów znalezionych na 23 stanowiskach archeologicznych na południu Hiszpanii i Portugalii. Szczątki pochodzą z okresu 5000 lat, począwszy od neolitu. Efektem pracy jest opublikowany na łamach Journal of Osteoarcheology artykuł The use and abuse of cinnabar in Late Neolithic and Copper Age Iberia.
Rtęć to niezwykle niebezpieczny pierwiastek. Światowa Organizacja Zdrowia wymienia go wśród 10 największych zagrożeń dla współczesnego zdrowia publicznego. Uczeni z z Hiszpanii, Portugalii Brazylii i USA informują, że najwyższy poziom ekspozycji ludzi na działanie rtęci miał miejsce w epoce miedzi, 2900–2600 lat przed naszą erą. Wówczas to bardzo rozpowszechniło się użycie cynobru, naturalnie występującego minerału zawierającego siarczek rtęci. Był on wykorzystywany w roli barwnika, któremu przypisywano znacznie symboliczne i religijne.
Największa na świecie kopalnia cynobru, wpisana na Listę Światowego Dziedzictwa UNESCO, znajduje się w Almadén w Hiszpanii. Prace wydobywcze rozpoczęto tam już w neolicie, przed 7000 lat. Do początku epoki miedzi, przed 5000 lat, cynober stał się bardzo pożądanym cennym materiałem. W Portugalii i Andaluzji spotykamy groby ozdobione tym barwnikiem. Był używany zarówno do dekorowania samych ścian, jak i malowania figurek czy przedmiotów składanych ze zmarłymi. Miał znaczenie symboliczne, ezoteryczne. Tak powszechne używanie cynobru musiało oznaczać, że sporo osób było narażonych na kontakt z niebezpiecznym poziomem rtęci. Sproszkowany cynober można było przypadkiem wchłonąć przez drogi oddechowe czy przenieść do ust wraz z pożywieniem.
I rzeczywiście, badania kości niektórych zmarłych wykazały, że doszło w nich do koncentracji rtęci rzędu 400 ppm (części na milion). O tym, jak olbrzymia to wartość niech świadczy fakt, że WHO uznaje, iż bezpieczny poziom rtęci we włosach nie powinien przekraczać 2 ppm.
Rtęć musiała powodować u wielu z tych osób poważne skutki zdrowotne, a poziom 400 ppm w organizmie jest tak duży, że nie można wykluczyć celowego spożywania lub wdychania sproszkowanego cynobru. Praktyki takie mogły mieć związek z symbolicznym i rytualnym znaczeniem, jaki nadawano barwnikowi. Autorzy badań wykluczają bowiem, by naturalna ekspozycja na rtęć w środowisku – na przykład na rtęć zawartą w żywności – mogła skutkować tak wielką jej koncentracją w organizmie.
Pod koniec epoki miedzi i na początku epoki brązu użycie cynobru na badanym obszarze znacznie się zmniejsza, do tego stopnia, że znika on z wielu miejsc, w których wcześniej był rozpowszechniony. Barwnik jednak był popularny przez kolejne tysiące lat. Znajdziemy go w sztuce starożytnego Rzymu, manuskryptach średniowiecza czy renesansowym malarstwie. Do tego jednak czasu cynober produkowano w procesie chemicznym, gdyż znano niebezpieczeństwa związane z jego wydobyciem. Nadal był on toksyczny, gdyż do produkcji używana była rtęć.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Młodzi naukowcy z Wydziału Geoinżynierii Uniwersytetu Warmińsko-Mazurskiego (UWM) stworzyli Kapsułę Nowego Życia, a w niej warunki niezbędne do powstania małego ekosystemu. Olsztynianie pracują nad specjalnym nawozem, który pozwoli na uprawę i rozwój roślinności na Marsie i w innych miejscach, w których obecnie jest to niemożliwe.
Wyniki tych badań mogą stanowić przełom nie tylko dla NASA czy Elona Muska planującego osiedlić ludzi na Czerwonej Planecie. Pomogą także walczyć z głodem na wyjałowionych terenach pustynnych - podkreślono w komunikacie Wydziału Geoinżynierii.
Autorami opisywanych badań są Izabela Świca ze Szkoły Doktorskiej UWM i Hubert Kowalski, doktorant z Katedry Inżynierii Środowiska na Wydziale Geoinżynierii.
Świca i Kowalski zajmują się wytworzeniem specjalnego nawozu z biomasy glonowo-grzybowej. Co ważne, substancja ma właściwości rekultywujące glebę, również reolit marsjański.
Początki projektu
"Kapsuła Nowego Życia NLC" to projekt, który w 2019 r. otrzymał dofinansowanie w konkursie Studencki Grant Rektora. Autorzy kapsuły - Hubert Kowalski, Maciej Piejdak oraz Izabela Świca - stworzyli Kapsułę w ramach Koła Naukowego Inżynierii Środowiska. Jak zaznaczono w Wiadomościach Uniwersyteckich, pomysł, który wystawili do rektorskiego konkursu, był na tyle ciekawy i rozwojowy, że nie tylko otrzymał grant, ale i zakończył się zgłoszeniem do Urzędu Patentowego RP. Autorzy złożyli też propozycję jego zastosowania do użyźniania jałowych pustynnych gruntów rządom Zjednoczonych Emiratów Arabskich i Kataru.
Do tego, żeby właściwości glonów i grzybów wykorzystać, zainspirował nas prof. Mirosław Krzemieniewski, opiekun naszego koła – opowiada Hubert Kowalski. Studenci stwierdzili, że skoro grzyby i glony się uzupełniają, należy je połączyć. Powstał pomysł podwójnego reaktora do ich hodowli. W górnej części grubej szklanej rury znajdują się zielenice - a konkretnie chlorella zwyczajna (Chlorella vulgaris) - w dolnej rezydują zaś grzyby. Na pytanie jakie, Kowalski odpowiada następująco: leśne, a mówiąc nienaukowo – tzw. psie. Pozbieraliśmy ich grzybnie w lesie i zasadziliśmy na podłożu ze słomy w naszym reaktorze. Glony i grzyby mają dużo światła i ciepła, dostają pożywki i ich jedynym zadaniem jest produkować biomasę.
Badamy współpracę i wzajemne zależności rozwoju między glonami a grzybami w warunkach niemal samowystarczalnych. Grzyby, rozkładając namnażającą się biomasę mikroglonów, wydzielają niezbędny do rozwoju glonów dwutlenek węgla. Glony zaś, w procesie fotosyntezy, wytwarzają tlen dla grzybów. W ten sposób powstaje nawóz, który użyźnia glebę – dodaje.
Mechanizm działania i prace nad udoskonaleniem
Woda zostanie pozyskana z urządzenia wykorzystującego zjawisko skraplania się rosy. Wykorzystanie paneli fotowoltaicznych pozwoli m.in. na ogrzanie reaktora z glonami i grzybami nocą. Jak podaje Lech Kryszałowicz, redaktor naczelny Wiadomości Uniwersyteckich, część glonów z górnego reaktora będzie dopływać do dolnego z grzybami, aby miały czym się pożywiać. Z zewnątrz kapsuła będzie potrzebować tylko co jakiś czas pożywki dla glonów. Nadmiar biomasy z reaktora będzie odprowadzany bezpośrednio do gruntu pod kapsułą, użyźniając go. Kapsuły można ustawiać przy sobie, tak aby powstawały poletka. Nadmiar tlenu uleci do atmosfery. W warunkach laboratoryjnych z 2 kg CO2 udało się uzyskać 1 kg biomasy.
Kapsuła Nowego Życia to bardzo oryginalny i obiecujący pomysł. To szansa na użyźnienie gruntów na obszarach o glebach ubogich, pustynnych, gdyż wzbogaca je w substancje organiczne. Ważne jest też to, że Kapsuły nie potrzebują licznej obsługi. Jej autorzy myślą już o zasilaniu ich w pożywki dla glonów za pomocą dronów, a Izabela o wykorzystaniu tego pomysłu do ożywienia Marsa – pochwalił byłych podopiecznych prof. Mirosław Krzemieniewski.
Badania rozpoczęły pod kierunkiem prof. Krzemieniewskiego, a obecnie są kontynuowane pod przewodnictwem prof. dr. hab. Marcina Dębowskiego. Pracujemy ciągle nad udoskonaleniem kapsuły, czyli np. zwiększeniem wydajności glonów i badaniem, w jakim tempie substancja organiczna przenika przez grunt – mówi Kowalski.
Jeśli próby zasilania Kapsuł przez drony się powiodą, obniży to koszty ich eksploatacji i niewątpliwie zwiększy ich atrakcyjność. Będzie ich można ustawiać więcej i w większej liczbie miejsc, także w tych z trudnym dostępem.
Pracujemy na symulancie marsjańskiej gleby, który pochodzi z Hawajów. Na podstawie zgromadzonych danych pozyskanych z dotychczasowej eksploracji Czerwonej Planety Amerykanie stworzyli kopię skały pokrywającej Marsa o identycznych właściwościach. Badając wytworzony nawóz, w Kapsule Nowego Życia eksperymentujemy na próbkach właśnie tego symulantu – wyjaśnia Izabela Świca.
Nie tylko Mars
Wyniki badań doktorantów mogą pomóc w odtworzeniu żyzności gleb na terenach zdegradowanych, a także pustynnych. Nasze badania umożliwią uprawę i rozwój roślinności w miejscach, na których dzisiaj nie da się tego robić. W obliczu zwiększającej się liczby ludności na świecie i ciągle nierozwiązanego problemu głodu, organiczny nawóz użyźniający glebę niesie nadzieję na poprawę warunków życia dla milionów ludzi - podkreśla Świca.
Prace badawcze mają się zakończyć w 2023 roku.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W gniazdach brazylijskich mrówek z plemienia Attini zidentyfikowano związek przeciwgrzybiczy, który może znaleźć praktyczne zastosowanie w medycynie. Od dawna wiadomo, że Attini hodują grzyby, którymi się pożywiają. Bakterie Psuedonocardia i Streptomyces wytwarzają zaś metabolity, które chronią mrówcze uprawy przed patogenami. Jednak dotychczasowe badania pokazywały, że mimo iż mrówki na różnych obszarach mają wspólnego przodka, to metabolity bakterii miały różną strukturę.
Teraz na łamach ACS Central Science czytamy, że udało się zidentyfikować pierwszy związek przeciwgrzybiczny, który występuje w gniazdach mrówek w różnych lokalizacjach na terenie Brazylii i który można zastosować w medycynie.
Opisaliśmy strukturę attinimycyny, jej geny oraz jej ewolucyjne związki z oksaheliną A (oxachelin A) oraz cahuitamycyną A (cahuitamycin A). To trzy nierybosomalne peptydy, będące strukturalnymi izomerami o różnej sekwencji peptydowej, stwierdzają autorzy badań.
Attinimycyna wykazuje żelazozależną aktywność przeciwgrzybiczą skierowaną przeciwko grzybiczym patogenom, ale nie przeciwko grzybom uprawianym przez mrówki. W badaniach in vivo wykazała ona silne działanie przeciwko mysiemu modelowi infekcji Candida albicans. Siła oddziaływania attinimycyny jest porównywalna do azoli przeciwgrzybiczych. Wykrycie attinimycyny zarówno w gniazdach mrówek jak i na ciele robotnic to dowód na rolę, jaką odgrywa attinimycyna w ochronie upraw grzybów przed patogenami, mówią naukowcy z Uniwersytetu w São Paulo.
Bliższe badania pokazały, że attinimycyna wytwarzana jest przez niemal 2/3 szczepów Pseudonocardia. Jako, że siła działania nowego związku jest porównywalna do azoli (np. ketokonazol, mikonazol czy flukonazol), uczeni mają nadzieję, że przyda się on w praktyce klinicznej.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.