Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

To lęk wysokości, nie odwodnienie

Rekomendowane odpowiedzi

W piśmie New England Journal of Medicine ukazał się artykuł, którego autorzy dowodzą, iż latanie samolotem może wywoływać łagodną postać lęku wysokości. Objawia się on m.in. lekkim bólem i krótkim oddechem, które występują podczas długich podróży samolotem. Dotychczas objawy te przypisywano odwodnieniu, zanieczyszczeniu powietrza czy konieczności siedzenia wiele godzin w fotelu. Uczeni dowodzą teraz, że to nic innego jak lęk wysokości.

Aby to zbadać, przeprowadzono eksperymenty w symulatorach. Badanych przez trzy godziny poddawano takiemu ciśnieniu, jakie występuje na pokładzie samolotu lecącego na wysokości 7000-8000 tysięcy stóp i porównywano ich wyniki z eksperymentami, podczas których symulowano przelot na niższych wysokościach. Okazało się, że objawy prawdziwego lęku wysokości (wymioty, zawroty głowy, zaburzenia snu) występują niezależnie od pułapu, na którym leci samolot. Jednak pułap ma znaczenie w przypadku łagodnego lęku. Objawy występowały częściej, gdy badani „lecieli” wyżej. Bardziej podatne były na nie kobiety i młode osoby, niż mężczyźni i osoby starsze.

Michael Muhm i jego zespół z Boeinga, który prowadził badania, stwierdził, że jeśli samoloty pasażerskie będą latały na wysokości 6000 stóp lub niższej, podróż będzie znacznie bardziej komfortowa dla pasażerów.

W eksperymencie wzięło udział ponad 500 osób. Podczas jego trwania otrzymywały takie samo jedzenie, jak na pokładach samolotów. Mogły obejrzeć pięć filmów, ale nie wolno im było pić alkoholu.

Typowe ciśnienie w kabinie współczesnego samolotu pasażerskiego jest utrzymywane na poziomie odpowiednim dla wysokości 5500-7500 stóp, nawet jeśli samolot leci wyżej. Samoloty pasażerskie latają raczej na większych wysokościach, gdyż pozwala to zaoszczędzić paliwo, a i pokrycie samolotu wolniej się zużywa. Uzyskanie we współczesnych aluminiowych samolotach ciśnienia odpowiedniego dla mniejszych wysokości byłoby dość kosztowne.

Boeing oznajmił, że w swoich nowych samolotach z serii 787 ustali ciśnienie na poziomie dla 6000 stóp, a więc takie, które dla pasażerów jest znacznie bardziej wygodne i czyni podróż przyjemniejszą. Boeing może zmienić ciśnienie, gdyż kabina 787 jest wykonana z materiałów kompozytowych, a nie z aluminium.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
      Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
      Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
      W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
      Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
      Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pierwszy praktyczny test kapsuły załogowej CST-100 Starliner nie przebiega zgodnie z planem. Pojazd Boeinga, który już wkrótce ma wozić astronautów, znalazł się na innej orbicie niż planowana.
      Kapsuła wystartowała z Przylądka Canaveral o godzinie 12:36 czasu polskiego. Sam start rakiety Atlas V przegiegł bez zakłóceń. Prawidłowo przebiegło też oddzieleni Starlinera i Centaura – drugiego stopnia rakiety nośnej – od pierwszego stopnia. Później Starliner oddzielił się od Centaura i leciał za pomocą własnych silników. Wtedy to zboczył z kursu i wszedł na inną orbitę niż planowano. Zespół naziemny ma nad nim kontrolę, a z pojazdem jest wszystko w porządku. Obecnie kontrolerzy pracują nad rozwiązaniem problemu.
      Zgodnie z planem lotu Starliner powinien jutro, 21 grudnia, o godzinie 11 czasu polskiego zadokować do Międzynarodowej Stacji Kosmicznej. Obecnie nie wiadomo, czy to się uda.
      Od powodzenia lotu testowego zależy, jak będzie wyglądała realizacja planu lotów załogowych za pomocą Starlinera. Pierwszy lot załogowy ma się odbyć około połowy przyszłego roku.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.
      To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.
      Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.
      Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.
      Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.
      Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pomiędzy SpaceX a Boeingiem toczy się zaciekła rywalizacja w przemyśle kosmicznym, a jednym z najważniejszych jej elementów są fundusze NASA. W 2014 roku obie firmy złożyły wnioski o finansowanie pojazdów załogowych, zdolnych do przewiezienia astronautów na Międzynarodową Stację Kosmiczną. Boeing poprosił o 50% więcej od SpaceX i pieniądze otrzymał.
      Obie firmy zapowiadały różne terminy realizacji zadania i obie przesuwały te terminy. Dotychczas jednak nie znaliśmy zdania samej NASA na temat perspektyw i postępów obu przedsiębiorstw. Dopiero teraz w nowym raporcie US Government Accountability Office (GAO) pojawiły się informacje wskazujące, jak NASA ocenia prace prowadzone przez obie firmy.
      Na podstawie dotychczasowych postępów i oceny ryzyk NASA uważa, że Boeing będzie gotowy do uzyskania certyfikatu pozwalającego na loty załogowe na ISS pomiędzy 1 maja 2013 a 30 sierpnia 2020. Dla SpaceX termin ten określono na pomiędzy 1 sierpnia 2019 a 30 listopada 2020. Analitycy NASA wyliczyli też średnią i stwierdzili, że proces certyfikacyjny Boeinga może mieć miejce w grudniu 2019 roku, a SpaceX w styczniu 2020.
      Jak widać, oba przedsiębiorstwa idą łeb w łeb, a niewielka przewaga Boeinga może wynikać z faktu, że firma ta współpracuje z NASA znacznie dłużej niż SpaceX, więc jest lepiej zaznajomiona z procedurami i całym procesem certyfikacyjnym.
      Głównym celem raportu przygotowanego przez GAO nie było jednak informowanie opinii publicznej o tym, jak NASA ocenia SpaceX i Boeinga, ale poinformowanie Kongresu, że NASA może nie być gotowa do wysyłania astronautów na ISS po listopadzie 2019 roku. To ostatni miesiąc, na który Agencja ma wykupione miejsca dla swoich astronautów na pokładzie rosyjskich Sojuzów. Co prawda NASA pracuje nad potencjalnymi rozwiązaniami, ale nie ma planu awaryjnego, by uzupełnić istniejącą lukę. Bez takiego planu NASA naraża na ryzyko osiągnięcia i cele związane w wykorzystywaniem przez Stany Zjednoczone Międzynarodowej Stacji Kosmicznej – czytamy w raporcie.
      Po przygotowaniu raportu można się spodziewać, że Kongres nakaże NASA przygotowanie takiego planu. Być może Agencja będzie musiała przedłużyć kontrakt z Roskosmosem.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...