Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Szczepionki z napromieniowanymi mikroorganizmami
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Jedna z najbardziej popularnych hipotez dotyczących pojawienia się życia na Ziemi mówi, że to meteoryty przyniosły na naszą planetę cegiełki życia, aminokwasy. Teraz hipoteza ta zyskała silne wsparcie. Japońscy naukowcy poinformowali na łamach ACS Central Science, że przeprowadzone przez nich eksperymenty wykazały, iż aminokwasy mogły powstać na wczesnych meteorytach w wyniku oddziaływania promieniowania gamma.
Ziemia od samego początku istnienia była bombardowana przez meteoryty. Jeśli były wśród nich chondryty węgliste, to mogły dostarczyć one zarówno wodę, jak i aminokwasy. Chondryty węgliste zawierają dużo węgla i jeszcze więcej wody. Są wśród nich jedne z najbardziej prymitywnych meteorytów. Jednym z najbardziej znanych chondrytów węglistych i najlepiej przebadanych meteorytów w historii jest Murchinson. Zidentyfikowano w nim ponad 15 aminokwasów oraz węglik krzemu pochodzący sprzed 7 miliardów lat, zatem o 2,5 miliarda lat starszy niż sama Ziemia.
Trudno jednak jest wskazać, skąd wzięły się aminokwasy w meteorytach. Japońscy naukowcy z Yokohama National University, Kobe University i Tokyo Institute of Technology, pracujący pod kierunkiem Yoko Kebukawy wiedzieli, że reakcje pomiędzy prostymi molekułami – jak amoniak czy formaldehyd – mogą prowadzić do powstania aminokwasów, pod warunkiem, że biorą wnich w nich udział woda i ciepło. Chondryty zawierają sporo wody, a we wczesnych chondrytach węglistych znajdował się radioaktywny glin-26, który podczas rozpadu emituje promieniowanie gamma. Nie wiemy jednak, jaki wpływ mogłoby mieć promieniowanie gamma na proces powstawania molekuł organicznych.
Japończycy postanowili więc sprawdzić, czy promieniowanie gamma mogło zapewnić energię do tworzenia się aminokwasów. Rozpuścili więc amoniak i formaldehyd w wodzie, zamknęli całość w szklanej próbówce i poddali ją oddziaływaniu wysokoenergetycznego promieniowania gamma pochodzącego z rozpadu kobaltu-60. Okazało się, że im silniejsze promieniowanie, tym większa produkcja takich aminokwasów jak alanina, glicyna, kwas α-aminomasłowy, glutaminowy oraz β-aminokwasów.
Na podstawie wyników badań oraz spodziewanych dawek promieniowania gamma z glinu-26 naukowcy obliczyli, że tyle alaniny i β-alaniny, ile znaleziono w Murchinsonie, powinno powstać w ciągu 1000 do 100 000 lat. Badania te dowodzą, że promieniowanie gamma mogło być katalizatorem powstania aminokwasów, które zapoczątkowały życie na Ziemi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wieloletnie obserwacje mikrokwazara SS 433 pozwoliły zidentyfikować szczegóły procesów odpowiedzialnych za produkcję wysokoenergetycznego promieniowania i lepiej poznać jego odległych masywnych kuzynów: kwazary - informuje IFJ PAN.
Podczas obserwacji mikrokwazaru SS 433 przeprowadzonych w obserwatorium High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) po raz pierwszy zarejestrowano promieniowanie gamma o energiach powyżej 25 TeV. Uważna analiza danych doprowadziła z kolei do zaskakujących wniosków dotyczących miejsc i mechanizmów odpowiedzialnych za produkcję tego promieniowania. Wyniki badań zostały właśnie zaprezentowane na łamach prestiżowego czasopisma naukowego Nature.
O badaniach poinformował PAP Instytut Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, którego pracownicy uczestniczyli w badaniach.
Kwazary - jak podkreśla IFJ PAN w przesłanej PAP informacji – należą do najbardziej niezwykłych, a jednocześnie najjaśniejszych obiektów Wszechświata. Siłą napędową kwazara jest znajdująca się w jego centrum supermasywna czarna dziura, otoczona dyskiem akrecyjnym, uformowanym przez spadającą materię.
Kwazary są źródłami ekstremalnie intensywnego promieniowania elektromagnetycznego, które obejmuje niemal całe spektrum: od fal radiowych po wysokoenergetyczne promieniowanie gamma. Jednak – jako rodzaj galaktycznych jąder – kwazary z definicji są obiektami od nas odległymi. Najbliższy spośród nich, napędzany szaleńczo wirującymi wokół siebie supermasywnymi czarnymi dziurami Markarian 231, gości w jądrze galaktyki oddalonej o 600 milionów lat świetlnych. Nie jest to niestety dystans sprzyjający prowadzeniu wysokorozdzielczych obserwacji, które ułatwiłyby zrozumienie natury zachodzących tu procesów.
Naukowcy mogą jednak uciec się do obserwacji... kwazarów w miniaturze. Jak zauważa IFJ PAN, to, co kwazar wyczynia w skali galaktyki, mikrokwazar robi w skali układu gwiazdowego.
Czarne dziury Markariana 231 są gigantyczne: mniejsza ma masę 4 milionów mas Słońca, większa aż 150 milionów. Z kolei najbliższy nam mikrokwazar, znajdujący się w tle gwiazdozbioru Orła SS 433, jest układem podwójnym o radykalnie mniejszych rozmiarach. Znajduje się tu bardzo gęsty obiekt - prawdopodobnie czarna dziura o masie kilku słońc, będąca pozostałością po wybuchu supernowej. Pożera ona materię z dysku akrecyjnego zasilanego wiatrem gwiazdowym napływającym z pobliskiego nadolbrzyma o typie widmowym A (podobną gwiazdą, doskonale widoczną na nocnym niebie, jest Deneb, najjaśniejszy obiekt gwiazdozbioru Łabędzia). Całą tę malowniczą parę, wirującą wokół siebie w imponującym tempie 13 dni i otoczoną mgławicą W50, dzieli od Ziemi dystans zaledwie 18 tys. lat świetlnych.
Zarówno kwazary, jak i mikrokwazary, mogą generować dżety, czyli bardzo wąskie i bardzo długie strugi materii, emitowane w obu kierunkach wzdłuż osi rotacji obiektu – tłumaczy cytowana w informacji prasowej dr hab. Sabrina Casanova, prof. IFJ PAN. Dżety są tworzone przez cząstki rozpędzone do prędkości nierzadko bliskich prędkości światła. Pod względem prędkości dżety z SS 433 nie są jednak specjalnie imponujące: osiągają zaledwie 26 proc. prędkości światła.
Jak jednak podkreśla dr hab. Casanova, ważniejsze jest tu coś innego: Większość obserwowanych kwazarów ma dżety mniej lub bardziej, ale jednak skierowane w naszą stronę. Taka orientacja utrudnia rozróżnienie szczegółów. Natomiast mikrokwazar SS 433 był na tyle uprzejmy, że skierował swoje dżety nie ku nam, a niemal prostopadle do kierunku, w którym patrzymy. Zatem nie dość, że mamy obiekt niemal pod ręką, to jeszcze jest on ustawiony optymalnie, jeśli chodzi o obserwacje takich detali, jak miejsca, gdzie powstaje promieniowanie – stwierdza badaczka.
SS 433 jest jednym z zaledwie kilkunastu kwazarów znajdujących się w naszej galaktyce - a do tego, jako jeden z nielicznych, emituje promieniowanie gamma. Przez 1017 dni promieniowanie to było rejestrowane w obserwatorium HAWC, pracującym na wysokości ponad 4100 m n.p.m. na zboczu meksykańskiego wulkanu Sierra Negra. Zbudowany tu detektor składa się z 300 stalowych zbiorników z wodą, wyposażonych w fotopowielacze wrażliwe na ulotne błyski świetlne, znane jako promieniowania Czerenkowa. Pojawia się ono w zbiorniku, gdy wpadnie do niego cząstka poruszająca się z prędkością większą od prędkości światła w wodzie.
Kluczowe znaczenie ma fakt, że część błysków pochodzi od cząstek wygenerowanych wskutek zderzeń wysokoenergetycznych kwantów gamma z ziemską atmosferą. Odpowiednia analiza błysków w zbiornikach pozwala zidentyfikować ich przyczynę. W ten sposób każdej doby HAWC pośrednio rejestruje fotony gamma o energiach od 100 gigaelektronowoltów (GeV) do 100 teraelektronowoltów (TeV). Są to energie nawet trylion razy większe od energii fotonów światła widzialnego i kilkunastokrotnie większe od energii protonów w akceleratorze LHC.
W trakcie obserwacji SS 433 (prowadzonych na granicy możliwości rozdzielczych HAWC) naukowcom udało się zarejestrować fotony o energiach powyżej 25 TeV, tj. od 3 do 10 razy większych od raportowanych w całej historii badań mikrokwazarów. Ku zaskoczeniu badaczy w zakresie wysokoenergetycznego promieniowania gamma najjaśniejszym obiektem w układzie wcale nie był sam SS 433 - lecz znajdujące się po jego obu stronach miejsca, w których dżety urywają się, zderzając z materią odrzuconą przez supernową.
To nie koniec niespodzianek – dodaje cytowany w komunikacie dr Francisco Salesa Greus z IFJ PAN. Fotony gamma o energiach 25 TeV muszą być produkowane przez cząstki o jeszcze większych energiach. Mogłyby to być protony, ale wtedy musiałyby mieć ogromne energie, na poziomie 250 TeV. Ze zgromadzonych danych wynikało jednak, że ten mechanizm, nawet jeśli rzeczywiście działa, w przypadku SS 433 nie jest w stanie wygenerować odpowiedniej ilości promieniowania gamma – tłumaczy naukowiec.
W trakcie dalszych prac dane z HAWC zestawiono z pomiarami SS 433 w pozostałych zakresach spektralnych z innych obserwatoriów. Ostatecznie udało się ustalić, że wysokoenergetyczne kwanty gamma – lub przynajmniej ich większość – muszą być emitowane przez elektrony w dżecie w trakcie ich zderzeń z wypełniającym cały kosmos niskoenergetycznym promieniowaniem mikrofalowym tła. Powyższy mechanizm - po raz pierwszy opisany właśnie w artykule w Nature – nie mógł być wykryty w obserwacjach kwazarów z dżetami skierowanymi ku Ziemi. Mikrokwazar SS 433 pomógł więc ujawnić nie tylko własne tajemnice, ale także tajemnice najjaśniejszych latarń Wszechświata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mars Science Laboratory zaczął dostarczać NASA wyniki pierwszych pomiarów. Pojazd, który podąża w kierunku Mars, mierzy promieniowanie obecne w przestrzeni kosmicznej. Wyposażono go w Radiation Assessment Detector (RAD), który monitoruje cząsteczki ze Słońca, supernowych i innych źródeł. Uzyskane w ten sposób dane pomogą zaprojektować pojazd do przyszłych misji załogowych na Marsa.
RAD jest częścią łazika Curiosity, który będzie kontynował pomiary promieniowania po przewidzianym na sierpień przyszłego roku lądowaniu na Marsie.
Już wcześniej prowadzono pomiary promieniowania w przestrzeni kosmicznej, jednak wszystkie instrumenty umieszczano na powierzchni sond lub blisko niej. RAD ukryty jest głęboko we wnętrzu Mars Space Laboratory, jest ekranowany przez inne otaczające go urządzenia, a zatem dokonywane przezeń pomiary bardziej odpowiadają warunkom, w jakich będą podróżowali astronauci.
Misja RAD jest niezwykle ważna dla lotów załogowych. Trzeba bowiem pamiętać, że pojazd kosmiczny będzie ekranowany by chronić załogę, jednak sam też może stanowić dla niej zagrożenie. Poszczególne elementy pojazdu, bombardowane przez wysokoenergetyczne cząsteczki znajdujące się w przestrzeni kosmicznej, staną się wtórnym źródłem cząsteczek, które mogą być bardziej niebezpieczne niż cząsteczki kosmiczne.
Mars Science Laboratory został wystrzelony 26 listopada. Dotychczas przebył około 51 milionów kilometrów. Od Marsa dzieli go jeszcze około 520 milionów kilometrów.
-
przez KopalniaWiedzy.pl
Błysk promieniowania gamma utwardzi tworzywa sztuczne protez stawów. Dzięki temu przetrwają lata i nie powstaną wywołujące skutków ubocznych odłamki.
Do wykonania poszczególnych części endoprotez wykorzystuje się różne materiały: stal nierdzewną, stopy tytanu, ceramikę. By stymulować wzrost tkanki chrzęstnej, stosuje się m.in. powłokę z nylonu. Okazuje się jednak, że w trakcie użytkowania powstają odpryski, które drażnią tkanki, prowadząc do bolesnego stanu zapalnego.
W swoich najnowszych badaniach Maoquan Xue z Changzhou Institute of Light Industry Technology oceniał skutki dodania ceramicznych cząstek i włókien do dwóch materiałów do powlekania endoprotez: 1) polietylenu bardzo wysoko molekularnego o dużej gęstości (UHMWPE) i 2) polieteroeteroketonu (PEEK). Obecnie ani UHMWPE, ani PEEK nie sprawują się wystarczająco dobrze przy naprężeniach powstających w trakcie codziennego użytkowania. Długie łańcuchy polimerowe dobrze rozprowadzają przyłożone siły, co przekłada się na szybkie powstawanie szczelin.
Gdy jednak do materiału doda się cząstki ceramiczne i kompozyt podda się oddziaływaniu błysku promieniowania gamma, główne łańcuchy polimerowe ulegają rozerwaniu, bez wpływu na ogólną strukturę sztucznej chrząstki. Nie powstają mikroszczeliny, bo łańcuch nie rozciąga się nadmiernie pod wpływem działających sił. Xue uważa, że kompozyt może być bardziej biokompatybilny, co zmniejsza ryzyko odrzucenia przeszczepu. Wskazuje m.in. na większą receptywność w stosunku do osteocytów lub komórek macierzystych.
-
przez KopalniaWiedzy.pl
Pięćdziesięciodwuletnia Brenda Jensen może mówić po raz pierwszy od 11 lat, kiedy to podczas operacji uszkodzono jej krtań. Ostatnio przeszła pierwszy na świecie zabieg jednoczesnego przeszczepienia krtani i tchawicy. Była to jednocześnie druga operacja przeszczepienia krtani; poprzednia miała miejsce w Cleveland Clinic w 1998 r.
W 1999 r. rurka tracheotomijna uszkodziła gardło Jensen, a tkanka bliznowata doprowadziła do niedrożności dróg oddechowych. Od tej pory konieczne było zastosowanie tracheostomy, przy której oddychanie odbywa się z pominięciem nosa, gardła i krtani. Pacjentka mogła się porozumiewać wyłącznie za pomocą syntezatora mowy.
W październiku zeszłego roku chirurdzy z Centrum Medycznego Uniwersytetu Kalifornijskiego w Davis przeprowadzili u zmarłego dawcy laryngektomię (zabieg usunięcia krtani), pobrali też tarczycę i 6-centymetrowy fragment tchawicy. Zabieg wszczepienia ich Jensen i połączenia nerwów krtaniowego górnego i wstecznego oraz naczyń krwionośnych trwał aż 18 godzin.
Po 13 dniach Amerykanka wypowiedziała pierwsze słowa: Dzień dobry. Chcę wrócić do domu. Jesteście wspaniali. Teraz może już mówić przez dłuższy czas i na nowo uczy się przełykania. Pani Jensen nie może się doczekać, aż ponownie będzie jeść, pić i pływać. Na razie ma jednak nadal tracheostomę, która zostanie ostatecznie usunięta po wzmocnieniu mięśni szyi. Na razie 52-letnia matka i babcia cieszy się odzyskanym powonieniem. Po ostatniej kontroli w czwartek (20 stycznia) pozwolono jej wypić pierwszą po przeszczepie szklankę wody.
Ponieważ krtań jest bardzo skomplikowanym narządem, powodzenie kalifornijskiej operacji daje nadzieję na ulepszenie procedury przeszczepów twarzy.
Przeszczep krtani traktuje się jak eksperymentalny zabieg, który poprawia jakość, ale nie ratuje życia. Bierze się też pod uwagę fakt, że pacjent musi już zawsze zażywać leki immunosupresyjne, zapobiegające odrzuceniu przeszczepu. Mogą one skracać życie, ale Jensen uznano za dobrą kandydatkę do transplantacji, gdyż i tak musiała to robić z powodu przeprowadzonego 4 lata temu przeszczepu nerki i trzustki.
Jensen mówi głosem swoim, nie dawcy. Laryngolodzy tłumaczą, że jego brzmienie zależy od kształtu gardła, jamy ustnej, nosa i zatok.
Zabieg nie jest refundowany przez ubezpieczalnie, więc gdyby nie to, że zespół medyczny zdecydował się na wolontariat, Jensen nie byłoby na niego w ogóle stać. Koszty zostały w dużej mierze pokryte przez Uniwersytet Kalifornijski.
http://www.youtube.com/watch?v=iWFebzW8EoI
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.