Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Pomarańczowe kalafiory wyglądają niecodziennie i, podobnie jak odmiany fioletowe czy zielone, nie u wszystkich wywołują pozytywne skojarzenia. Pracujący pod przewodnictwem genetyka Li Li badacze z Cornell University odkryli, że za nietypowy kolor warzywa odpowiada mutacja genetyczna. Okazało się też, że inne zmutowane rośliny uprawne, m.in. kukurydza, ziemniaki, ryż, sorgo czy pszenica, mogą zawierać więcej istotnych dla zdrowia składników odżywczych.

Mutacja zwiększa w roślinach zawartość beta-karotenu, barwnika odpowiedzialnego za charakterystyczną barwę np. marchwi, a zarazem prekursora witaminy A. Wiele roślin umie go wytwarzać, nie robi tego jednak z przyczyn metabolicznych albo z braku miejsca do jego magazynowania.

Pomarańczowy kalafior mógłby skutecznie pomagać w zwalczaniu niedoborów witaminy A, zwłaszcza w ubogich krajach rozwijających się.

Inni naukowcy stworzyli tzw. złoty ryż, który po "wstawieniu" kilku dodatkowych genów zaczyna produkować beta-karoten. W przypadku części roślin technika ta okazała się jednak mniej skuteczna od metody Li, który skupił się nie na syntezie, ale przechowywaniu omawianego związku.

Obecnie Li i Joyce Van Eck pracują nad transgenicznymi ziemniakami. Wskutek manipulacji genetycznej mają powstać odmiany o zwiększonych zdolnościach zarówno wytwarzania, jak i magazynowania beta-karotenu (The Plant Cell).

Pierwsze pomarańczowe kalafiory pojawiły się ok. 30 lat temu na polu uprawnym w Kanadzie. Później trafiły do regularnej sprzedaży.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Polscy chemicy opracowali stabilne barwniki, silnie emitujące światło czerwone. Umożliwią one badanie mikroskopem fluorescencyjnym głęboko położonych struktur biologicznych i obserwować choćby przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg.
      A jednak świeci
      Zaprojektowanie, a następnie zsyntetyzowanie lepszych barwników pozwoli na dalszy rozwój mikroskopii STED (Stimulated Emission Depletion) oraz w przyszłości na jej użycie w diagnostyce medycznej – mówi prof. Daniel Gryko z Instytutu Chemii Organicznej PAN, cytowany w informacji przesłanej przez FNP, która finansowała badania.
      Polscy naukowcy, we współpracy z Francuzami i Niemcami, stworzyli nową klasę trwałych znaczników fluorescencyjnych – nowy typ diketopirolopiroli – wykazujących niezwykle intensywną emisję światła czerwonego. Prof. Gryko podkreśla, że czerwone światło jest najlepiej widoczne pod mikroskopem fluorescencyjnym. Dlatego nowe związki organiczne będzie można zastosować jako sondy fluorescencyjne.
      Wyniki badań przedstawiono w formie publikacji w czasopiśmie „Angewandte Chemie”. Publikacja ta – jak informuje FNP – zmienia sposób patrzenia na związki, które w swojej strukturze mają dwie grupy nitrowe. Dotychczas sądzono, że grupa nitrowa prawie zawsze tłumi fluorescencję. A jednak diketopirolopirole emitują światło, choć mają taką właśnie strukturę. Badacze wykazali, że przy spełnieniu odpowiednich założeń grupa nitrowa nie wpływa na fluorescencję związku. Jest to istotne, bo często taka grupa podwyższa stabilność znacznika. Odkrycie jest w trakcie patentowania.
      Od zakreślaczy po zaawansowaną medycynę
      Fluorescencja to zdolność do emitowania światła o określonym kolorze, na skutek wzbudzenia promieniowaniem świetlnym o określonej długości. Związki wykazujące fluorescencję są często wykorzystywane w praktyce - od pisaków, tzw. zakreślaczy po tablety, laptopy, a nawet telewizory z wyświetlaczami zbudowanymi z tzw. OLED-ów, czyli diod na bazie związków organicznych, emitujących światło niebieskie, zielone i czerwone.
      Związki cechujące się fluorescencją znalazły też zastosowanie w nowoczesnej biologii molekularnej i diagnostyce medycznej. Wykorzystuje się je do obserwacji – przy pomocy mikroskopów fluorescencyjnych – różnych organelli komórkowych, białek, a także do śledzenia procesów zachodzących w komórkach – mówi prof. Daniel Gryko.
      Tłumaczy, że mikroskop fluorescencyjny ma znacznie większą rozdzielczość, niż konwencjonalny mikroskop optyczny, który (z uwagi na falową naturę światła) nie pozwala na obrazowanie struktur mniejszych, niż około 200 nanometrów. Rozdzielczość o kilka rzędów wielkości większą niż mikroskop optyczny ma mikroskop elektronowy, ale można w nim obserwować wyłącznie martwe obiekty, umieszczone w próżni i bombardowane wiązką elektronów. Mikroskop fluorescencyjny pozwala badać żywe organizmy i procesy, jakie w nich naturalnie zachodzą.
      Do przeprowadzenia takich obserwacji potrzeba właśnie barwników fluorescencyjnych lub znaczników. Barwniki te muszą przenikać przez błony komórkowe żywych komórek. Dołącza się je do obiektu, który ma być uwidoczniony pod mikroskopem, np. konkretnego białka, i w ten sposób można obserwować np. specyficzne przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg: w chorobie Parkinsona, Alzheimera czy Huntingtona.
      Najbardziej zaawansowaną techniką mikroskopii fluorescencyjnej jest mikroskopia typu STED, w której oprócz wiązki światła wzbudzającego, wykorzystuje się dodatkową wiązkę, która wygasza fluorescencję na brzegach wzbudzonego punktu. Dzięki temu uzyskany obraz ma bardzo wysoką rozdzielczość.
      Opracowanie mikroskopii fluorescencyjnej typu STED zostało uhonorowane Nagrodą Nobla w 2014 roku. Dzięki niej możliwe stało się precyzyjne badanie m.in. wzajemnych oddziaływań białek w komórkach czy różnicowania się tkanek w rozwoju embrionalnym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Spożywanie zbyt dużych ilości witaminy A zmniejsza gęstość kości, zwiększając ich podatność na złamania.
      Autorzy raportu z Journal of Endocrinology prowadzili badania na myszach, którym podawano dawki witaminy A, będące odpowiednikiem 4,5-13-krotności zalecanego dziennego spożycia (ZDA) dla ludzi.
      Witamina A odgrywa ważną rolę we wzroście, odporności czy widzeniu. Nasz organizm jej nie produkuje, ale można ją pozyskać, uwzględniając w diecie takie produkty, jak mięso, nabiał, bataty, marchew czy szpinak.
      Niektóre dowody sugerują, że ludzie przyjmujący suplementy witaminy A są bardziej narażeni na uszkodzenia kości. Wcześniejsze badania na myszach wykazały, że krótkotrwałe przedawkowywanie witaminy A (odpowiednik 13-142-krotności ZDA u ludzi) skutkuje zmniejszoną gęstością kości i podwyższonym ryzykiem złamań już po zaledwie 1-2 tygodniach. Opisywane studium to 1. próba oceny, czy te same efekty występują przy niższych dawkach witaminy A (bardziej przypominających dawki przyjmowane przez osoby zażywające przez dłuższy czas suplementy).
      Zespół dr. Ulfa Lernera z Sahlgrenska Academy wykazał, że u myszy, którym przez dłuższy czas podawano witaminę A w dawkach stanowiących 4,5-13-krotność ludzkiego ZDA, zmniejszenie gęstości i wytrzymałości kości było widoczne już po 8 dniach. Zjawisko to pogłębiało się w czasie 10-tygodniowego studium.
      W przyszłości Lerner chce sprawdzić, czy dawki witaminy A będące odpowiednikiem dawek ludzkich wpływają na wzrost kości indukowany ćwiczeniami. Oprócz tego Szwedzi zamierzają ocenić skutki suplementacji witaminą A u starszych myszy, u których wzrost szkieletu się już zakończył.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pomidory mogą być skuteczną alternatywą dla leków obniżających poziom cholesterolu i ciśnienie krwi. Włączenie ich do diety jest zatem skutecznym sposobem zapobiegania chorobom sercowo-naczyniowym.
      Doktorzy Karin Ried i Peter Fakler z Uniwersytetu w Adelajdzie jako pierwsi podsumowali wyniki badań dotyczących wpływu likopenu na stężenie cholesterolu i ciśnienie krwi. Australijczycy przeanalizowali wyniki 14 studiów z ostatnich 55 lat. Nasze metastudium sugeruje, że jeśli dana osoba spożywa ponad 25 mg likopenu dziennie, może w ten sposób zmniejszyć stężenie złego cholesterolu LDL aż o 10%. Można to porównać do wpływu niskich dawek leków przepisywanych powszechnie pacjentom z lekko podwyższonym cholesterolem, ale bez ich skutków ubocznych, do których należą m.in. bóle mięśni, osłabienie i uszkodzenie nerwów – opowiada Ried. Szczególnie bogate w likopen są pomidory. Przed chorobami serca zabezpiecza wypijanie 0,5 l soku pomidorowego dziennie lub zjadanie 50 g przecieru. Mniejsze ilości tego przeciwutleniacza znajdują się w arbuzie, papai, różowym grejpfrucie, gruszli (nazywanej też guawą) oraz owocach dzikiej róży.
      Akademicy z antypodów przypominają, że likopen jest lepiej przyswajany z pomidorów przetworzonych niż świeżych. Ponieważ dobrze rozpuszcza się w tłuszczach, warto poddać go obróbce termicznej z dodatkiem np. oliwy.
      Badanie pokazuje, że spożywanie dużych ilości likopenu wiąże się ze spadkiem ryzyka chorób sercowo-naczyniowych, włączając w to miażdżycę, zawały serca i udary. W przyszłości trzeba będzie ustalić, czy dawki likopenu powyżej 25-44 mg dziennie zapewniają jakieś dodatkowe korzyści.
    • przez KopalniaWiedzy.pl
      Przed dziewięcioma dniami, 2 maja, robot Ranger z Cornell University pobił rekord długości marszu bez doładowywania baterii. Urządzenie szło już od 30 godzin, 49 minut i 2 sekund, gdy nagle zatrzymało się z powodu braku energii. Przeszło w tym czasie 65 kilometrów.
      Test prowadzono w hali sportowej, a Rangerem kierowali na zmianę studenci i współpracownicy profesora Andy'ego Ruiny, w którego laboratorium powstał.
      Ranger znacząco poprawił swój poprzedni rekord, który wynosił 23 kilometry. Wcześniej rekord długości marszu należał do Bigdoga i wynosił 20,5 km.
      Teraz specjaliści z Cornella postanowili stworzyć maszynę, która będzie w stanie przebyć maraton. Po 20 godzinach marszu Ranger przekroczył linię mety maratonu i szedł nadal. Pod koniec byliśmy już bardzo zmęczeni - mówi Violeta Juarez Crow, jedna z osób sterujących robotem.
      Profesor Ruina mówi, że głównym celem badań jest praca nad motoryką robotów wyposażonych w kończyny.
      Ranger korzysta z sześciu małych komputerów, które co 1/500 sekundy wykonują 10 000 linii kodu. Wyposażono go też w dziesiątki czujników, a całość zużywa 4,7 wata.
      Musieliśmy się trochę napracować, by obliczenia, praca czujników i przesyłanie danych nie zużywały zbyt wiele energii. Mamy nadzieję, że wykorzystamy to, czego się nauczyliśmy do stworzenia bardziej zaawansowanych robotów - mówi Jason Cortell, który zaprojektował większość układów elektronicznych dla Rangera.
    • przez KopalniaWiedzy.pl
      Gąsienice jedwabników, które karmi się liśćmi morwy z dodatkiem fluorescencyjnych barwników, produkują nici o interesujących barwach, np. rażąco różowej.
      Doktorzy Natalia Tansil i Han Mingyong z Institute of Materials Research and Engineering (IMRE) w Singapurze podkreślają, że metoda jest tania i prosta. Obecnie trwają rozmowy z potencjalnymi partnerami przemysłowymi, dzięki którym w ciągu kilku lat proces powinno się łatwo przeskalować i skomercjalizować. Ponieważ barwnik trafia do rdzenia nici, kolory utrzymują się dłużej niż przy tradycyjnym farbowaniu. Poza tym nie zużywa się tyle wody, a i zanieczyszczenie środowiska jest znacznie mniejsze. By produkt trafił na rynek, trzeba jeszcze rozszerzyć gamę dostępnych kolorów i zadbać o powtarzalność, także w zakresie intensywności barw.
      Naukowcy widzą dla swojej dietetycznej metody również zastosowania na niwie medycyny. Czemu bowiem nie podawać żerującym gąsienicom Bombyx mori czegoś, co pozwoliłoby uzyskać nici, a następnie opatrunki ze związkami antybakteryjnymi, przeciwzapalnymi czy antykoagulantami? Badacze z Singapuru myślą też o gazach lub bandażach z substancjami działającymi jak czujniki.
      W przeszłości fluorescencyjne nici wytwarzały jedwabniki zmodyfikowane genetycznie. W 1999 r. BBC opublikowało np. artykuł o dokonaniach zespołu prof. Hajime Moriego z Instytutu Technologii w Kioto, światowej stolicy kimona. Japońskie jedwabniki wytwarzały świecącą zieloną nić, ale nie o kolor tu właściwie chodziło. Naukowcy chcieli ulepszyć właściwości nici. Założyli, że gdyby po wprowadzeniu genu pozwalającego na wzmocnienie oprzędu świecenie znikło, świadczyłoby to o skutecznym podstawieniu jednego genu drugim.
      Specjaliści z IMRE uzyskali niezmienione strukturalnie różowe, żółte czy pomarańczowe nici, które zaczynały świecić po potraktowaniu promieniami UV. Jedyną różnicą między proponowanym procesem a aktualnie stosowanymi metodami hodowli jest dodawanie barwnika do menu w ostatnich 4 dniach stadium larwalnego. Potem kolorowe kokony mogą już być zbierane i przetwarzane za pomocą zwykłych metod – opowiada rzecznik IMRE Eugene Low Ooi Meng.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...