Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Einstein i Newton byli autystykami?

Rekomendowane odpowiedzi

Badacze z uniwersytetów w Oksfordzie i Cambridge uważają, że zarówno Einstein, jak i Newton cierpieli na zespół Aspergera, uznawany za lżejszą postać autyzmu. Ludzie z tym schorzeniem często bywają ekscentryczni, brakuje im też umiejętności społecznych, co znacznie utrudnia komunikowanie z innymi. Nadmiernie absorbują ich złożone zagadnienia. Anglicy podkreślają, że te właśnie cechy można było zaobserwować w zachowaniu dwóch słynnych uczonych.

Według akademików, twórca teorii względności od dzieciństwa wykazywał symptomy zespołu Aspergera. Był samotnikiem, a do 7. roku życia obsesyjnie powtarzał zasłyszane zdania. Z pewnością nie można go też uznać za dobrego wykładowcę. Nie umiał przekazać swojej wiedzy uczniom. Później potrafił nawiązywać kontakty z kobietami i tworzyć w miarę trwałe związki. Zajmował się wieloma zagadnieniami, wypowiadał się też w kwestiach politycznych. Naukowcy twierdzą jednak, że cały czas występowały u niego objawy zespołu Aspergera.

Pasja, zakochiwanie się i stawanie w obronie sprawiedliwości doskonale pasują do zespołu Aspergera. Większość osób z tym zaburzeniem ma natomiast problem z towarzyskimi pogawędkami, ponieważ nie potrafi wygłaszać krótkich kwestii — wyjaśnia profesor Simon Baron-Cohen z uczelni w Cambridge.

Newton wysławiał się z wysiłkiem. Do tego stopnia angażował się w swoją pracę naukową, że często zapominał o jedzeniu i nieprzyjaźnie lub obojętnie odnosił się nielicznych bliskich osób, które miał. Wykłady prowadził nawet wtedy, gdy nikt na nie nie przychodził. Mówił do pustej sali. W wieku 50 lat przeszedł załamanie nerwowe. Popadł w depresję i paranoję.

Anglicy wyjaśniają zachowanie naukowców autyzmem, inni eksperci uważają, że to niepotrzebne, ponieważ było ono "skutkiem ubocznym" geniuszu. Wg nich, Einsteinowi i Newtonowi brakowało po prostu cierpliwości dla ślamazarności intelektualnej ludzi o niższym ilorazie inteligencji. Dr Glen Elliott, psychiatra z Uniwersytetu Kalifornijskiego w San Francisco, podkreśla, że w połączeniu z narcyzmem i bezgranicznym poświęceniem jednej idei mogło to dawać wrażenie izolacji i trudnego charakteru. Einstein miał jednak ponoć poczucie humoru, czyli coś, czego brakuje chorym z zespołem Aspergera.

Profesor Baron-Cohen odparowuje zarzuty amerykańskiego kolegi po fachu. Twierdzi, że osoby z zespołem Aspergera mogą w czymś przodować, jeśli znajdą swoją niszę czy, inaczej mówiąc, miejsce w życiu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Pasja, zakochiwanie się i stawanie w obronie sprawiedliwości doskonale pasują do zespołu Aspergera. Większość osób z tym zaburzeniem ma natomiast problem z towarzyskimi pogawędkami, ponieważ nie potrafi wygłaszać krótkich kwestii ?

 

Dodajmy dennych i o niczym. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość macintosh

ciekaw jestem czy gdybyś spotkał Einstein'a to czy wygrałbyś swoimi argumentami

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
ciekaw jestem czy gdybyś spotkał Einstein'a to czy wygrałbyś swoimi argumentami

 

Co miałbym wygrać?? PRAWDA jest jedna , tylko drogi dojścia do niej rózne , co nie oznacza lepsze gorsze tylko różne. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość macintosh

nie dam się strollować

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość fakir

Żeby coś oryginalnego wymyślić trzeba mieć coś z głową? 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość macintosh

no to dam się strollować : a czy nie inspirująca jest postać która ma coś z głową i coś wymyśla a ponad to widzi to jako swoją jedyną wizję i misję: wtedy mając głowę ok zaczynasz "mieć coś z głową" : a czy nie inspirujący był Emmet 'Doc' Brown w "Back To The Future"? fajnie coś wymyslić, ale jeśli to taki pomysł o którym zapominasz i który nie ma wpływu na twoje życie: to był to średni pomysł ; zresztą to tylko domysły: szum wokół Ein'iego i Newt'a , ale dzieki temu mogłem powiedzies Swoje 8)  :;)  ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość macintosh

waldi: każdy ma Swoją prawdę, a o faktach można podyskutować, a o najlepszych rowiązaniach sytuacji, z możliwych, tym bardziej: waldi, o czym chciałbyś pogadać?

geniusz E i N polegał bardziej na tym, że potrafili wyjść poza swoją epokę i klimat kulturowy: może i potrafisz bezbłędnie o czymś wnioskować, a czy potrafisz coś więcej? geniuszem tez był Jack Sparrow, ale i tak nie mam tu nic do pogadania tym bardziej, że wierzę w powrót do przyszłości... 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
uważaj bo podziałam na troll'a działkiem fotonowym

 

Raczej neutrinowym bo krzywizna ziemi i brudne powietrze fotonom przeszkadza 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość macintosh

można jeszcze rozpozatrywać "bycie pozytywnie szurniętym", bo "miec coś z głową" to coś w stylu: nadużywć alkoholu, uszkodzić mózg, dostać w głowę w dzieciństwie, być bitym w szkole;

a fajne znaczenie pokazał waldi: "miec coś w głowie"

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość tymeknafali
Prawda jest jedna i bezdyskusyjna.  8)

To zależy... babcia mi zawsze mówi że prawda leży zawsze gdzieś po środku. Jeżeli potwierdził bym twoje zdanie znaczyło by to że nie ma gamy odcieni szarości, tylko że jest białe i czarne, albo jak by to maszyny mogłyby powiedzieć 1 lub 0 (prawda lub fałsz).

W prawdzie trzeba by wziąć pod uwagę więcej aspektów, jak np. punk postrzegania rzeczywistości przez każdego z nas, czyli to jak nas mózg definiuje, lub zna pewne zjawisko, bądź frazę, bądź słowo - np prawda. Załóżmy takie pytanie:

Czy  prawdą jest że antykoncepcja jest zła?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wyobraź sobie że budzisz się a wokół raj, wszystko super nawet masz nadzwyczajne możliwości latasz, przechodzisz przez ściany idziesz sobie zadowolony a tu kurde twój największy wróg (koleś co nie dał ściągnąć na klasówce ;D) i co zrobisz , czy aby gniew nie namówi cię do wykorzystania wszystkich środków które masz do wojny z nim?? a co na to pozostali którzy sa w raju ?? czy aby nie wywalą was z tego raju?? 

 

A teraz z innego pkt. widzenia: ktoś patrzy z raju na ciebie i widzi że jesteś ok , że pomimo wszystko nie konfliktujesz, a nawet rozumiesz swoją sytuację a widząc błędy innych pomagasz im zrozumieć. Mówi oto gościu który mógłby być w raju i mamy w-niebo-wstąpienie. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość tymeknafali

Zobaczę takiego gościa, to odwracam głowę w drugą stronę i udaje że go nie widzę, po prostu olewam dupka. A umiejętności... po prostu się niemi ciesze i korzystam póki mogę ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory (LBNL) udało się dokonać pierwszych pomiarów długości wiązania atomowego einsteinu. To jedna z podstawowych cech interakcji pierwiastka z innymi atomami i molekułami. Mimo, że einstein został odkryty przed 70 laty, to wciąż niewiele o nim wiadomo. Pierwiastek jest bowiem bardzo trudny do uzyskania i wysoce radioaktywny.
      Einstein został odkryty w 1952 roku przez Alberta Ghiorso w pozostałościach po wybuchu bomby termojądrowej. W czasie eksplozji jądro 238U wychwytuje 15 neutronów i powstaje 253U, który po emisji 7 elektronów zmienia się w 253Es.
      Zespół naukowy pracujący pod kierunkiem profesor Rebeki Abergel z LBNL i Stosha Kozimora z Los Alamos National Laboratory, miał do dyspozycji mniej niż 250 nanogramów pierwiastka. Niezbyt wiele wiadomo o einsteinie. To spore osiągnięcie, że udąło się nam przeprowadzić badania z zakresu chemii nieorganicznej. To ważne, gdyż teraz lepiej rozumiemy zachowanie tego pierwiastka, co pozwoli nam wykorzystać tę wiedzę do opracowania nowych materiałów i nowych technologii. Niekoniecznie zresztą z udziałem einsteinu, ale również z użyciem innych aktynowców. Lepiej poznamy też tablicę okresową pierwiastków, mówi Abergel.
      Badania prowadzono w nowoczesnych jednostkach naukowych: Molecular Foundry w Berkeley Lab i Stanford Synchrotron Radiation Lightsource w SLAC National Accelerator Laboratory. Wykorzystano przy tym spektroskopię luminescencyjną i absorpcję rentgenowską.
      Jednak zanim przeprowadzono badania trzeba było pozyskać sam einstein. To nie było łatwe. Pierwiastek został wytworzony w High Flux Isotope Reactor w Oak Ridge National Laboratory. To jedno z niewielu miejsc na świecie, gdzie można produkować einstein. Wytwarza się go bombardując kiur neutronami. Wywołuje to cały łańcuch reakcji chemicznych. I tutaj pojawił się pierwszy problem. Próbka była mocno zanieczyszona kalifornium. Uzyskanie odpowiedniej ilości czystego einsteinu jest bowiem niezwykle trudne.
      Zespół naukowy musiał więc zrezygnować z pierwotnego planu wykorzystania krystalografii rentgenowskiej, czyli techniki uznawanej za złoty standard przy badaniu struktury wysoce radioaktywnych próbek. Technika to wymaga bowiem otrzymania czystej metalicznej próbki. Konieczne stało się więc opracowanie nowej techniki badawczej, pozwalającej na określenie struktury einsteinu w zanieczyszczonej próbce. Z pomocą przyszli naukowcy z Los Alamos, który opracowali odpowiedni instrument utrzymujący próbkę.
      Później trzeba było poradzić sobie z rozpadem einsteinu. Uczeni wykorzystywali 254, jeden z bardziej stabilnych izotopów, o czasie półrozpadu wynoszącym 276 dni. Zdążyli wykonać tylko część zaplanowanych eksperymentów, gdy doszło do wybuchu pandemii i laboratorium zostało zamknięte. Gdy naukowcy mogli do niego wrócić, większość pierwiastka zdążyła już ulec rozpadowi.
      Mimo to udało się zmierzyć długość wiązań atomowych oraz określić pewne właściwości einsteinu, które okazały się odmienne od reszty aktynowców. Określenie długości wiązań może nie brzmi zbyt interesująco, ale to pierwsza rzecz, którą chcą wiedzieć naukowcy, badający jak metale łączą się z innymi molekułami. Jaki rodzaj interakcji chemicznych się pojawia, gdy badany atom wiąże się z innymi, mówi Abergel.
      Gdy już wiemy, jak będą układały się atomy w molekule zawierającej einstein, możemy poszukiwać interesujących nas właściwości chemicznych takich molekuł. Pozwala to też określać trendy w tablicy okresowej pierwiastków. Mając do dyspozycji takie dane lepiej rozumiemy jak zachowują się wszystkie aktynowce. A mamy wśród nich pierwiastki i ich izotopy, które są przydatne w medycynie jądrowej czy w produkcji energii, wyjaśnia profesor Abergel.
      Odkrycie pozwoli też zrozumieć to, co znajduje się poza obecną tablicą okresową i może ułatwić odkrycie nowych pierwiastków. Teraz naprawdę lepiej zaczynamy rozumieć, co dzieje się w miarę zbliżania się do końca tablicy okresowej. Możemy też zaplanować eksperymenty z użyciem einsteinu, które pozwolą nam na odkrycie kolejnych pierwiastków. Na przykład pierwiastki, które poznaliśmy w ciągu ostatnich 10 lat, jak np. tenes, były odkrywane dzięki użyciu berkelu. Jeśli będziemy w stanie uzyskać wystarczająco dużo czystego einsteinu, możemy wykorzystać ten pierwiastek jako cel w eksperymentach, w czasie których wytwarza się nowe pierwiastki. W ten sposób zbliżmy się do – teoretycznie wyliczonej – wyspy stabilności.
      Ta poszukiwana wyspa stabilności to teoretycznie wyliczony obszar tablicy okresowej, gdzie superciężkie pierwiastki mogą istnieć przez minuty, a może nawet dni, w przeciwieństwie do obecnie znanych superciężkich pierwiastków istniejących, których czas półrozpadu liczony jest w mikrosekundach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pulsary to szybko obracające się obiekty, które mieszczą nawet ponad 140% masy Słońca w kuli o średnicy zaledwie 20 kilometrów. Mają one niezwykle silne pole magnetyczne i emitują fale radiowe na każdym z biegunów magnetycznych. Jako, że ich rotacja jest niezwykle stabilna, impulsy z wirujących pulsarów docierają do Ziemi z regularnością zegara atomowego. Olbrzymia masa, niewielkie rozmiary i precyzja zegara atomowego to cechy, dzięki którym naukowcy mogą wykorzystać pulsary do testowania ogólnej teorii względności Einsteina.
      Teoria ta przewiduje, że czasoprzestrzeń jest zaginana w pobliżu masywnych obiektów. Jednym z teoretycznie przewidywanych skutków takiego zagięcia czasoprzestrzeni jest jej wpływ na precesję pulsarów w układzie podwójnym. Wpływ ten bierze się z przesunięcia wektorów wirujących pulsarów w stosunku do całkowitego wektora momentu obrotowego układu podwójnego. Prawdopodobnie przyczyna tkwi w asymetrycznej eksplozji supernowych. Powstają w ten sposób zaburzenia precesji, które możemy obserwować, testować i sprawdzać, czy zgadzają się one ze zjawiskami opisanymi przez teorię Einseina.
      Naukowcy z Instytutu Radioastronomii im. Maxa Plancka poinformowali właśnie o wieloletnich wynikach obserwacji pulsaru PSR J1906+0746. Gdy obiekt ten został odkryty w 2004 roku wyglądał jak każdy inny pulsar. Można było obserwować dwa spolaryzowane impulsy wysyłane z obu biegunów przy każdym obrocie. Gdy jednak naukowcy kilka miesięcy po odkryciu przyjrzeli się mu po raz drugi okazało się, że do Ziemi dociera tylko jeden impuls. Rozpoczęto więc badania, które trwały od roku 2004 do 2018, a które prowadził zespół Gregory'ego Desvignesa.
      Okazało się, że zniknięcie jednego z sygnałów było związane z precesją pulsaru. PSR J1906+0746 wykonuje pełen obrót co 144 milisekundy, a co 4 godziny obiega towarzyszący mu pulsar. Niemieccy badacze zauważyli, że początkowo przy każdym obrocie do Ziemi docierały dwa impulsy „północny” i „południowy”. Z czasem impuls „północny” zanikł. Szczegółowe badania polaryzacji impulsów pozwoliły naukowcom na stworzenie modelu, który prognozuje właściwości docierających do Ziemi impulsów na przestrzeni najbliższych 50 lat. Gdy model, oparty na ogólnej teorii względności Einsteina, porównano z danymi obserwacyjnymi, okazało się, że wszystko idealnie do siebie pasuje, a oparte na nim przewidywania są obarczone mniejszym błędem niż te opierające się na obecnym modelu referencyjnym. Wszystko zaś zgadza się z przewidywaniami Einsteina.
      Pulsary pozwalają nam badać grawitację w unikatowy sposób. To piękny przykład takich badań, mówi Ingrid Stairs z University of British Columbia.
      Opracowany model pozwala też przewidzieć pojawiania się i zanikanie „północnego” i „południowego” impulsu z PSR J1906+0746. Impuls „południowy” zniknie nam z pola widzenia około roku 2028 i będzie widoczny ponownie w latach 2070–2090. Z kolei impuls „północny” będzie można obserwować w latach 2085–2105.
      PSR J1906+0746 znajduje się w odległości 25 000 lat świetlnych od Ziemi, w Gwiazdozbiorze Orła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) przeprowadzili najdokładniejszy test podstawowego założenia ogólnej teorii względności Einsteina, które to założenie opisuje powiązanie grawitacji z czasem i przestrzenią. Test wykonano porównując różne typy zegarów atomowych, a jego przeprowadzenie było możliwe dzięki temu, że urządzenia te są ciągle udoskonalane. Podczas testu uzyskano rekordowo niski wynik dla słynnego eksperymentu myślowego Einsteina ze spadającą windą. Einstein teoretyzował, że wszystkie obiekty znajdujące się w takiej windzie będą jednakowo przyspieszały tak, jakby znajdowały się w jednorodnym polu grawitacyjnym lub jakby grawitacja na nie nie oddziaływała. Innymi słowy, względne właściwości takich obiektów wobec siebie pozostaną takie same podczas swobodnego spadku windy.
      Uczeni z NIST wykorzystali Układ Słoneczny, a ich windą była Ziemia spadająca w polu grawitacyjnym Słońca. W celu zbadania względnych właściwości obiektów porównali dane z dwóch typów zegarów atomowych na przestrzeni 14 lat ich pracy, by sprawdzić, czy pozostawały one ze sobą zsynchronizowane, nawet w obliczu zmian oddziaływania grawitacyjnego Słońca na Ziemię. Dane pochodziły z lat 1999-2014 z 12 zegarów. Cztery z nich to wodorowe masery, których właścicielem jest NIST, a 8 kolejnych to najdokładniejsze na świecie cezowe zegary atomowe znajdujące się w laboratoriach w USA, Wielkiej Brytanii, Francji, Niemczech i Włoszech.
      Podczas jednego z takich pomiarów porównywano częstotliwości promieniowania elektromagnetycznego zegarów. Pomiary wykazały naruszenie einsteinowskiej zasady rzędu 0,00000022 (±0,00000025). To najmniejszy uzyskany dotychczas wynik, oznaczający brak naruszenia. Oznacza to ni mniej ni więcej, że stosunek częstotliwości wodoru do częstotliwości cezu pozostawał identyczny w swobodnie spadającej windzie. Tym samym NIST pobił swój własny rekord pomiaru z 2007 roku. Niepewność obecnego pomiaru jest 5-krotnie mniejsza niż wówczas.
      Jak powiedział Bijunath Patla z NIST, osiągnięcie takie było możliwe dzięki coraz dokładniejszym zegarom cezowym udoskonaleniu procesu transferu danych pomiędzy zegarami, dzięki czemu mogą one porównywać swoje sygnały oraz dokładniejszemu obliczeniu pozycji i prędkości Ziemi.
      Naukowcy uważają, że mało prawdopodobne jest, by udało się dokładniej przetestować założenia Einsteina za pomocą zegarów wodorowych i cezowych. Będzie to możliwe za pomocą przyszłych generacji zegarów optycznych. NIST już posiada takie zegary bazujące na atomach iterbu i strontu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nasze geny wpływają na czas przyglądania się szczęśliwym twarzom - twierdzą naukowcy z Uniwersytetów w Reading i Oksfordzie, którzy uważają, że dzięki ich odkryciom będzie można lepiej zrozumieć ludzki pociąg do uspołecznienia i niepodtrzymywanie kontaktu wzrokowego przez osoby z autyzmem (Molecular Autism).
      Małe dzieci dłużej przyglądają się wyrazom pozytywnych emocji i to prawdopodobnie to zjawisko stoi za procesem socjalizacji. U ludzi dorosłych zaobserwowano podobną tendencję: oni również dłużej patrzą na twarze zadowolone niż na fizjonomie wyrażające obrzydzenie.
      Zespół doktora Bhismadeva Chakrabartiego z Uniwersytetu w Reading i prof. Simona Barona-Cohena z Uniwersytetu w Oksfordzie odkrył, że rodzaj wariantu genu receptora kannabinoidowego CNR1 wpływa na czas poświęcany szczęśliwym ludzkim twarzom. Wcześniejsze badanie tego samego duetu wykazało, że polimorfizm CNR1 wiąże się ze zmienioną aktywnością prążkowia (regionu odpowiedzialnego za emocje i nagradzające zachowanie) w reakcji na szczęśliwe twarze.
      Brytyjczycy analizowali DNA 28 dorosłych ochotników, których przetestowano równolegle pod kątem czasu spoglądania na oczy i usta nagranych na wideo twarzy (wyrażały one różne emocje). Badacze stwierdzili, że dwa z czterech wariantów genu CNR1 wiązały się z dłuższym spoglądaniem na twarze szczęśliwe, ale nie na twarze wyrażające niesmak. Oba polimorfizmy dotyczyły miejsc, które nie kodują samego białka, ale mogą być zaangażowane w regulację produkcji proteiny (gen to nie tylko sekwencja kodująca, ale także elementy niekodujące, których rolą jest m.in. regulacja aktywności tegoż genu; sekwencja kodująca była zatem taka sama u wszystkich, więc białko było identyczne, ale aktywność genu już nie).
      To, jak patrzymy na bodźce społeczne takie jak twarze, jest niesamowicie ważne w determinowaniu naszego zaangażowania w społeczny świat. Nasze badanie dostarcza wstępnych dowodów [...], że u podłoża tej kluczowej umiejętności leżą geny - podsumowuje dr Chakrabarti.
    • przez KopalniaWiedzy.pl
      Najnowsze studium naukowców z Uniwersytetu w Cambridge wykazało, że autyzm częściej występuje w regionach, gdzie skupia się przemysł IT i jego baza naukowa. Projektem kierował znany specjalista ds. zaburzeń ze spektrum autyzmu (SA) prof. Simon Baron-Cohen, ale badania przeprowadzono w Holandii.
      Ze strony holenderskiej z Baronem-Cohenem współpracowała dr Rosa Hoekstra, zatrudniona zarówno w Centrum Badań nad Autyzmem Uniwersytetu w Cambridge, jak i przez The Open University. Zespół uważa, że doszło do ważnych ustaleń związanych z hipersystematyzacyjną teorią autyzmu.
      Akademicy przewidywali, że zaburzenia ze spektrum autyzmu będą powszechniejsze w populacjach z rozwiniętym podejściem systematyzującym, które definiuje się jako tendencję do analizowania działania systemów, a także przewidywania, kontrolowania i budowania systemów. Tego typu umiejętności są wymagane w takich dziedzinach nauki, jak inżynieria, fizyka, matematyka czy informatyka.
      Wcześniej naukowcy ustalili, że istnieje rodzinny związek między talentem do systematyzowania i autyzmem, ponieważ wśród dziadków i ojców dzieci z zaburzeniami ze spektrum autyzmu występuje swego rodzaju nadreprezentacja inżynierów. Przedtem zdobyto też dowody na to, że matematycy częściej mają rodzeństwo z zaburzeniami autystycznymi, a studenci nauk technicznych i przyrodniczych, w tym matematyki, sami mają więcej cech autystycznych.
      Najnowszym badaniem objęto dzieci w wieku szkolnym z 3 regionów Holandii: 1) Eindhoven, 2) Haarlemu i 3) Utrechtu. W Eindhoven znajdują się High Tech Campus Eindhoven z siedzibami firm Philips, ASML, IBM i ATOS Origin oraz Technische Universiteit Eindhoven. W Eindhoven 30% stanowisk oferuje właśnie przemysł technologiczny/IT, podczas gdy w Haarlemie i Utrechcie odsetek ten wynosi, odpowiednio, tylko 16 i 17%. Eindhoven stanowi region eksperymentalny, a Haarlem i Utrecht są regionami kontrolnymi. Baron-Cohen wybrał je ze względu na podobną wielkość populacji i skład socjoekonomiczny. Szkoły poproszono o podanie liczby uczniów oraz liczby dzieci ze zdiagnozowanymi zaburzeniami ze spektrum autyzmu i/lub dwoma kontrolnymi zaburzeniami neurorozwojowymi: dyspraksją i ADHD. W sumie szkoły dostarczyły danych diagnostycznych dot. 62.505 dzieci. Okazało się, że w Eindhoven częstość występowania SA wyniosła 229 na 10.000, w Haarlemie 84:10.000, a w Utrechcie 57:10.000, podczas gdy częstość zaburzeń kontrolnych była wszędzie zbliżona.
      Wyniki są zgodne z teorią, że w regionach, gdzie rodzice skłaniają się ku zawodom obejmującym silne systematyzowanie, takich jak w sektorze IT, wśród dzieci będzie wyższy wskaźnik autyzmu, ponieważ geny autyzmu mogą być wyrażane u krewnych pierwszego rzędu jako talent do systematyzowania. Rezultaty pozwalają też zrozumieć, jak geny autyzmu zachowały się w puli genowej populacji, ponieważ część z nich wydaje się związana z przystosowawczymi, korzystnymi cechami - tłumaczy Baron-Cohen. Hoekstra dodaje, że w przyszłości trzeba potwierdzić poprawność postawionych diagnoz i przetestować alternatywne wyjaśnienia podwyższonego wskaźnika autyzmu w Eindhoven. Niewykluczone przecież, że dzieci z zaburzeniami ze spektrum autystycznego są w pozostałych 2 regionach zwyczajnie słabiej wykrywane.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...