Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Najmodniejszy metal tego lata
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na ETH Zurich powstało niezwykle lekkie, 18-karatowe złoto, do którego wytworzenia użyto plastikowej matrycy w miejsce stopu metali. Lekkie złoto znajdzie zastosowanie w jubilerstwie, przede wszystkim przy produkcji zegarków, gdzie niewielkie zwiększenie wagi może być bardzo uciążliwe ale posiadacza zbyt ciężkiego zegarka.
Lekkie złoto to dzieło Leonie van't Hag z zespołu profesora Raffaele Mezzengi. Waży ono od 5 do 10 razy mniej niż standardowe 18-karatowe złoto, które jest zwykle wykonane z 3/4 złota i 1/4 miedzi. Taki stop ma gęstość około 15 g/cm3.
Gęstość nowego materiału wynosi zaledwie 1,7 g/cm3 i wciąż jest to jak najbardziej prawdziwe 18-karatowe złoto. Zamiast stopu metali van't Hagn, Mezenga i ich zespół wykorzystali włókna proteinowe i polimer, z których utworzyli matrycę, na którą nałożyli cienkie nanokryształy złota. Same nanokryształy zawierają też wiele pustych niewidocznych gołym okiem przestrzeni. Uczeni opisali swoje badania na łamach Advanced Functional Materials.
Cały proces produkcyjny przebiegał następująco: najpierw wszystkie składniki umieścili w wodzie, tworząc układ dyspersyjny. Po dodaniu soli zamienił się on w żel. Następnie wodę zastąpiono w nim alkoholem. Całość umieszczono w specjalnej komorze, gdzie w warunkach wysokiego ciśnienia i w atmosferze nadkrytycznego CO2 doszło do wymieszania się alkoholu i dwutlenku węgla. Po zmniejszeniu ciśnienia całość zamieniła się w homogeniczny aerożel. Następnie za pomocą wysokiej temperatury pozbyto się polimerów i nadano całości ostateczny kształt.
To złoto ma właściwości plastiku. Gdy upadnie na twardą powierzchnię, wydaje taki dźwięk, jak tworzywo sztucznej. Jednak ma połysk złota, można go polerować i obrabiać jak złoto. Co więcej można też dopasować jego twardość do przewidywanych zastosowań. Można też zmienić jego kolor zmieniając kształt tworzących go nanocząstek. Jeśli np. użyjemy sferycznych nanocząstek, złoto będzie miało fioletowy połysk. Możemy w ten sposób uzyskać wszystkie rodzaje złota o potrzebnych nam właściwościach.
Mezzenga mówi, że „plastikowe” złoto będzie szczególnie użyteczne w jubilerstwie i wytwarzaniu zegarków, gdzie dużą rolę odgrywa waga produktu. Nadaje się też do roli katalizatora, do zastosowania w elektronice czy w osłonach przed promieniowaniem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowy roztopił złoto w temperaturze pokojowej. Do odkrycia doszło przypadkiem.
Ludvig de Knoop z Chalmers University of Technology chciał zobaczyć, jak na tomy złota wpływa największe powiększenie ich w mikroskopie elektronowym. Byłem naprawdę zaskoczony, mówił de Knoop. Tym, co go tak zadziwiło było odkrycie, że w temperaturze pokojowej, pod wpływem działania mikroskopu, wierzchnia warstwa złota uległa stopieniu.
To niezwykłe zjawisko, które daje nam nową podstawową wiedzę o złocie, stwierdził uczony. Modelowanie komputerowe wykazało, że do stopienia złota nie doszło wskutek wzrostu temperatury, a w wyniku oddziaływania niedoskonałego pola elektrycznego, które wzbudziło atomy.
Odkrycie, że złoto może w ten sposób zmienić swoją strukturę jest nie tylko spektakularne, ale też ma przełomowe znaczenie dla nauki, mówią naukowcy. Będzie to miało olbrzymi wpływ na nauki o materiałach.
Uczeni odkryli też, że możliwe jest przełączanie pomiędzy strukturą stałą a stopioną, dzięki czemu mogą powstać nowe typy czujników, katalizatorów czy tranzystorów. Jako, że możemy kontrolować i zmieniać właściwości atomów na powierzchni otwierają się nam nowe możliwości zastosowań materiału, stwierdziła współautorka badań profesor Eva Olsson.
Warto tutaj podkreślić, że zmiana stanu skupienia na powierzchni zaszła w próbce o szerokości liczonej w nanometrach. Uzyskanie podobnego efektu na próbkach większych rozmiarów wymagałoby zastosowania napięcia elektrycznego, jakiego nie jesteśmy w stanie osiągnąć.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Microsoft ogłosił, że styczniowe targi CES 2012 (Consumer Electronic Show) będą ostatnimi, na których firma będzie obecna. Po raz ostatni też na otwarciu targów wystąpi prezes Microsoftu.
Bill Gates przemawiał na każdej uroczystości otwarcia CES w latach 1994-2008. Podczas dwóch ostatnich targów występował Steve Ballmer. W poniedziałek wieczorem, 9 stycznia, prezes software’owego koncernu wystąpi po raz ostatni.
Po przyszłym roku nie będziemy mieli ani własnego stoiska, ani przemówienia, ponieważ premiery naszych najważniejszych produktów odbywają się generalnie w innych niż styczniowe terminach - powiedział Frank Shaw, odpowiedzialny w Microsofcie za komunikację.
Shaw dodał, że firma szuka nowych sposobów komunikacji z użytkownikami. Większą rolę mają odgrywać imprezy organizowane przez sam Microsoft, korporacyjna witryna, firmowe sklepy oraz media społecznościowe.
Ezra Gottheil, analityk z Technology Business Research mówi, że decyzja Microsoftu to kolejna oznaka powolnego upadku targów technologicznych. Targi takie jak CES to bardzo trudna i kosztowna droga sprzedaży i chociaż jest do dobry sposób na nawiązywanie kontaktów przez małe firmy, wielkie koncerny technologiczne nie muszą prezentować swoich produktów w ten sposób.
Gottheil widzi podobieństwa z decyzją Apple’a o rezygnacji z Macworld Conferencje & Expo. Microsoft nie kopiuje tutaj Apple’a, ale podobnie jak Apple mają taki rodzaj produktów i takie przesłanie do klientów, że chcą je przekazać w sposób bardziej głęboki, złożony - dodaje.
Przedstawiciele Consumer Electronics Association, organizatora CES, odmówili odpowiedzi na pytanie, jak nieobecność Microsoftu może wpłynąć na przyszłość targów.
-
przez KopalniaWiedzy.pl
Na University of Cambridge powstała technika pozyskiwania wysokiej jakości grafenu w temperaturze ponaddwukrotnie niższej niż dotychczas. Osiągnięcie to znakomicie ułatwi zastosowanie grafenu w praktyce.
Zespół pracujący pod kierunkiem Roberta Weatherupa i Bernharda Bayera nałożył cienką warstwę złota na nikiel, na którym wzrasta grafen. To pozwoliło obniżyć temperaturę, w której tworzony jest grafen do zaledwie 450 stopni Celsjusza.
Obecnie najlepszą znaną metodą pozyskiwania wysokiej jakości grafenu jest osadzanie z fazy gazowej. W tym celu podłoże z niklu lub miedzi, które działa jak katalizator, poddaje się działaniu gazu zawierającego węgiel. W temperaturze ponad 1000 stopni Celsjusza dochodzi do osadzenia się warstwy węgla na podłożu. Powstaje grafen.
Metoda taka nie jest jednak pozbawiona wad. Wysokie temperatury niszczą część materiałów, które są wykorzystywane w produkcji elektroniki, przez co nie można z grafenu bezpośrednio tworzyć układów scalonych.
Tymczasem, jak odkryli brytyjscy uczeni, wystarczy do niklu dodać mniej niż 1% złota, by można było obniżyć temperaturę pracy z grafenem do 450 stopni Celsjusza. Co więcej, pozyskany w ten sposób grafen jest lepszej jakości. W tradycyjnej technice produkcji grafen pojawia się na całej powierzchni niklu i poszczególne kawałki tworzą się niezależnie. Z czasem powiększają się i łączą ze sobą, ale miejsca połączeń są mniej doskonałe niż pozostała powierzchnia grafenu i elektrony nie poruszają się nich równie swobodnie.
Tymczasem złoto blokuje wzrost grafenu. Pozwala zatem otrzymywać jednolite płachty, które rosły przez dłuższy czas, ale jako że nie napotkały na swojej drodze innych skrawków grafenu, nie łączyły się z nimi i nie występują w nich „szwy". Złoto pozwala zatem nie tylko na pozyskanie grafenu w znacznie niższej temperaturze, ale również na produkcję materiału o lepszych właściwościach.
Uczeni z Cambridge przeprowadzili przy okazji szczegółowe badania nad wzrostem grafenu. Dowiedzieli się, że do osadzania się grafenu nie dochodzi tylko w czasie, gdy podłoże jest schładzane oraz że na wzrost wpływa nie tylko powierzchnia katalizatora, ale też obszar poniżej.
Grafen wciąż jest przedmiotem laboratoryjnych badań i nie trafił jeszcze na linie produkcyjne. Jednak dzień jego rynkowego debiutu jest coraz bliżej. Idealnie byłoby, gdyby grafen udało się produkować bezpośrednio na izolatorze. Obecnie trzeba go przenosić z podłoża, na którym jest tworzony, na podłoże, gdzie ma powstać obwód. Problem w tym, że izolatory słabo sprawdzają się w roli katalizatorów do pozyskiwania grafenu z fazy gazowej. Badania nad wzrostem grafenu to wciąż młoda dziedzina wiedzy, ale rozwija się bardzo szybko - stwierdził Weatherup.
-
przez KopalniaWiedzy.pl
Badania nad procesami zachodzącym we wnętrzu gwiazd mogą przyczynić się do skuteczniejszej walki z nowotworami. Astronomowie z Ohio State University współpracują ze specjalistami ds. radiologii onkologicznej w celu stworzenia urządzenia, które będzie bardziej zabójcze dla guzów nowotworowych, a jednocześnie łagodniejsze dla zdrowej tkanki.
Urządzenie ma wykorzystywać zauważone w gwiazdach i wokół czarnych dziur zjawisko absorbowania i emisji promieniowania przez metale. Zauważono bowiem, że np. żelazo poddane działaniu promieni X emituje niskoenergetyczne elektrony. Niewykluczone zatem, że implant stworzony z ciężkich atomów metali umożliwi silne napromieniowanie guza, a jednocześnie zdrowa tkanka otrzyma dawkę promieniowania mniejszą niż jest to obecnie możliwe.
Symulacje przeprowadzone na Ohio State University (OSU) wykazały, że poddanie oddziaływaniu promieniami X o określonej częstotliwości pojedynczego atomu złota lub platyny powoduje, że atom ten emituje ponad 20 wolnoenergetycznych elektronów.
Sądzimy, że nanocząsteczki wprowadzone do guza mogą efektywnie absorbować promienie X i emitować elektrony, które zabiją guza - mówi Sultana Nahar z OSU.
Nahar wraz z profesore astronomii Andile Pradhanem odkryli, że przy odpowiednich częstotliwościach promieniowania X elektrony w atomach ciężkich metali wpadają w wibracje i uwalniają się ze swoich orbit, tworząc niewielkie skupiska plazmy wokół atomów. Jeśli udałoby się w ten sposób wykorzystać promienie X, to byłby to najprawdopodobniej największy postęp tej techniki od czasu odkrycia ich pożytecznych właściwości w 1890 roku.
Od dawna wiadomo, że gdy z orbity wypadnie jeden z elektronów blisko jądra, to elektron z dalszej powłoki może zająć jego miejsce. Proces ten jest związany z uwolnieniem się energii. Mamy wówczas do czynienia z samojonizacją, czyli efektem Augera. To zjawisko emisji elektronów przez atom, zachodzące dzięki energii uwalnianej podczas „opadania" elektronów z wyższych powłok walencyjnych na niższe. Często uwalniająca się energia jest na tyle duża, że dochodzi do wybicia kolejnych elektronów. Te tzw. wolne elektrony Augera mają niską energię, ale jest ich na tyle dużo, że, jak sądzą uczeni, mogą skutecznie zbombardować guza uszkadzając jego DNA.
Jako, że platyna jest już używana w walce z nowotworami, profesor Pradhan ma nadzieję, że nowa metoda będzie łączyła chemio- i radioterapię. Najpierw do guza zostaną wprowadzone cząsteczki platyny, a następnie za pomocą promieni X zostaną one aktywowane i przystąpią do niszczenia nowotworu.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.