Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Amerykańska Marynarka Wojenna złożyła wniosek patentowy na broń, która używa fal dźwiękowych do niszczenia wrogich obiektów. System wykorzystuje silne sygnały emitowane z sonarów, które przemieszczają się w wodzie i tworzą zjawisko zwane kawitacją akustyczną. Dźwięk jest na tyle silny, że tworzy w wodzie obszar obniżonego ciśnienia, które następnie gwałtownie rośnie.

We wniosku patentowym czytamy, że nowa technika polega na zidentyfikowaniu celu i wysłaniu w jego kierunku dwóch takich "baniek” kawitacyjnych, które, gdy się spotkają, tworzą destrukcyjne warunki zdolne do niszczenia wrogich celów.

Nowa broń ma zasięg 1 kilometra, a zniszczenia dokonywane są w promieniu 100 metrów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje.
      W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu.
      Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji.
      Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć.
      Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych.
      Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe.
      Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary.
      Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół z Texas A&M University odkrył najstarszą broń znalezioną w Ameryce Północnej. To grot włóczni, którego wiek oceniono na 15 500 lat. Odkrycia dokonali naukowcy pracujący pod kierunkiem profesora Michaela Watersa. Grot, wraz z pozostałościami po wielu innych sztukach broni, znaleziono na stanowisku Debra L. Friedkin znajdującym się około 65 kilometrów na północny-zachód od Austin. Stanowisko to jest intensywnie badane od 12 lat.
      Wspomniany grot, wykonany z czertu, został znaleziony wraz z innymi narzędziami w warstwie datowanej na 15 500 lat. Jest więc starszy od kultury Clovis, którą przez dziesięciolecia uważano za najstarszą kuklturę Ameryki.
      Nie ma wątpliwości, że grot ten był używany do polowań. To odkrycie jest istotne z tego względu, że dotychczas na żadnym stanowisku archeologicznym starszym od kultury Clovis nie znaleziono grotów włóczni, a jedynie kamienne narzędzia. Ten grot jest starszy od grotów kultur Clovis i Folsom. Kultura Clovis jest datowana na 13 000 – 12 700 lat, a Folsom jest młodsza. Archeolodzy zawsze marzą o tym, by znaleźć narzędzie charakterystyczne dla danego okresu, takie jak właśnie groty broni miotanej, które byłyby starsze od Clovis. I z takim właśnie znaleziskiem mamy tutaj do czynienia, mówi Waters.
      Jednym ze znaków rozpoznawczych kultury Clovis jest charakterystyczny dla niej zaawansowany grot. Podobnego kształtu obustronnych żłobień nie spotyka się nigdzie poza zasięgiem oddziaływania tej kultury.
      Osadnictwo ludzkie w Ameryce podczas ostatniego zlodowacenia było złożonym procesem i widać to w puli genetycznej mieszkańców kontynentu. Teraz zaczynamy to widzieć też w zabytkach archeologicznych, dodaje uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas IEEE Symposium on Security & Privacy eksperci z University of Michigan i Uniwersytetu Zhejiang przeprowadzili pokaz ataku akustycznego na dysk twardy. Atak taki może zakończyć się uszkodzeniem dysku i utratą danych.
      Atak za pomocą dźwięku, słyszalnego bądź ultradźwięków, działa dzięki wysłaniu fal o odpowiedniej częstotliwości. Wprowadza on przedmiot ataku w wibracje. We współczesnych dyskach twardych znajdują się liczne talerze magnetyczne i głowice, umieszczone bardzo blisko ich powierzchni. Gęste upakowanie danych sprawia, że głowice muszą być bardzo precyzyjnie pozycjonowane. Najmniejsze zakłócenie może spowodować błędy w zapisie i odczycie danych. Mocne wibracje to dla dysku poważne zagrożenie. Głowice mogą uderzyć w szybko wirujące talerze, przez co może dojść do uszkodzenia zarówno talerzy jak i samych głowic.
      Już wcześniejsze badania wykazały, że nagłe głośne dźwięki, jak np. alarm pożarowy, mogą wprowadzić talerze dysków w wibracje kończące się uszkodzeniem. Tajemnicą pozostawało jednak, jak i dlaczego celowo emitowane dźwięki prowadzą do błędów w pracy HDD i w konsekwencji do błędów w pracy systemu operacyjnego, mówią badacze. W opublikowanym przez siebie dokumencie szczegółowo omawiają, w jaki sposób dźwięki o różnych częstotliwościach prowadzą do utraty danych, awarii oraz fizycznych uszkodzeń dysków twardych.
      Podczas jednego ze swoich eksperymentów naukowcy dowiedli, że możliwe jest wywołanie awarii laptopa z Windows 10 wykorzystując w tym celu wbudowane w komputer głośniki, przez które został nadany sygnał ultradźwiękowy o odpowiedniej częstotliwości. Zaś w czasie innego z eksperymentów wykazano, że możliwe jest czasowe zakłócenie nagrywania obrazu przez kamerę przemysłową za pomocą odpowiedniego dźwięku wysłanego ze smartfona. Badacze nazwali swoje ataki BlueNote.
      Naukowcy opracowali też technikę ochrony dysku twardego przed atakiem dźwiękowym. Otóż w HDD znajduje się specjalny kontroler, którego celem jest upewnienie się, że głowice dysku pozostają w odpowiedniej pozycji. Obecnie kontrolery te nie są przygotowane na atak akustyczny. Okazuje się jednak, że wystarczy zmiana firmware'u dysku, by kontroler był w stanie kompensować ruch głowic wywołany atakiem. Ruch ten jest bowiem łatwy do przewidzenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trzymając w rękach broń, częściej zakładamy, że inni też ją mają.
      Prof. James Brockmole z University of Notre Dame przeprowadził z kolegą z Purdue University 5 eksperymentów. Ochotnikom pokazywano na komputerze serię zdjęć. Mieli oni określić, czy osoba na zdjęciu trzyma broń, czy neutralny obiekt, np. telefon komórkowy. Badani wykonywali zadanie, dzierżąc w dłoniach zabawkową broń albo coś neutralnego, np. piłeczkę.
      Naukowcy różnicowali przebieg poszczególnych eksperymentów. Czasem ludzie ze zdjęć nosili kominiarki; zmieniano też ich rasę oraz wymagany sposób reagowania, gdy badanym wydawało się, że mają oni ze sobą broń. Bez względu na scenariusz, ochotnicy częściej widzieli na fotografiach broń, gdy trzymali broń, a nie piłkę.
      Na zdolność obserwatora do wykrycia i skategoryzowania obiektu jako broni wpływają przekonania, oczekiwania i emocje. Teraz wiemy, że jego zdolność do zachowania się w określony sposób [możliwość skorzystania z broni] także bardzo zmienia rozpoznanie obiektu. Wydaje się, że ludzie mają spory problem z oddzieleniem tego, co postrzegają, od własnych myśli o tym, co mogliby [...] zrobić.
      Psycholodzy udowodnili, że u podłoża zaobserwowanego zjawiska leży możność działania. Okazało się bowiem, że sam widok leżącej obok broni w ogóle nie wpływał na ochotników. By coś się stało, trzeba było ją trzymać.
      Wyniki poprzednich badań wskazują, że ludzie postrzegają właściwości przestrzenne otoczenia w kategoriach zdolności do wykonania w nim zamierzonego działania. Brockmole wyjaśnia, że na takiej zasadzie osoby z szerszymi ramionami postrzegają drzwi jako węższe. Jak widać, w przypadku broni dzieje się coś podobnego...
    • By KopalniaWiedzy.pl
      Pysk ryb pił jest wyciągnięty w tzw. rostrum. Okazuje się, że to broń typu wszystko w jednym, bo nie tylko pozwala wyczuć ofiarę, ale i po zamachach wykonywanych na boki z imponującą prędkością zmienia się w widelec - kąsek nabija się bowiem na zęby.
      Wcześniej biolodzy wiedzieli, że ryby piły reagują na pole elektryczne ofiar. Na rostrum znajdują się tysiące elektroreceptorów, dodatkowo kanaliki w pokrywającej je skórze pozwalają wykryć ruch wody. Teraz australijsko-amerykańskiemu zespołowi udało się sfilmować te krytycznie zagrożone wyginięciem zwierzęta w akcji, co rozwiało wątpliwości dotyczące szczegółów działania piły.
      Barbara Wueringer z University of Queensland podkreśla, że była bardzo zaskoczona, widząc biegłość, z jaką ryby piły posługują się swoim "oprzyrządowaniem". Wystarczy powiedzieć, że poruszają rostrum z prędkością kilku wymachów na sekundę.
      Osobnikom sfilmowanym dzięki ukrytym kamerom podawano kawałki tuńczyków i kiełbi. Pchnięcia były niekiedy wystarczająco silne, by przepołowić rybne bloki. Wyszło też na jaw, że rostrum świetnie się nadaje do przyszpilania upolowanych kąsków do dna.
      W ramach najnowszego studium akademicy obserwowali, jak niedawno schwytane piły słodkowodne (Pristis microdon) nabijały "ofiarę", reagując na słabe pole elektryczne wody i dna, które miało przypominać to charakterystyczne dla żywych zwierząt.
      Fakt, że ryby piły poruszają się w kolumnie wody, by ściągnąć stamtąd ofiary, świadczy, że są bardziej aktywnymi myśliwymi niż dotąd sądzono. Kiedyś rostrum postrzegano jako pogrzebacz do przekopywania osadów dennych. Teraz okazało się, że mamy raczej do czynienia z, jak to ujmuje Wueringer, anteną połączoną z bronią. Rostra występujące u innych ryb spełniają albo funkcję wykrywacza, albo broni. U żaglicowatych pozwalają ogłuszać ofiary, natomiast wiosłonosowate wykorzystują rozmieszczone tam receptory do wyczuwania i nakierowywania się na pole elektryczne planktonu.
      Ryby piły nie kopią co prawda w dnie, ale przesuwają po nim rzędy zębów. Wg naukowców, zajmują się wtedy ostrzeniem. Ich zachowanie porównywano z rochowatymi, które mają z rybami piłami wspólnego przodka, ale nie wykształciły piły.
×
×
  • Create New...