Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Żeńskie jest lepsze

Rekomendowane odpowiedzi

Jak twierdzą naukowcy ze Szpitala Dziecięcego w Pittsburghu, komórki macierzyste uzyskiwane z mięśni kobiet mają większą zdolność regenerowania tkanki mięśni szkieletowych niż komórki męskie (Journal of Cell Biology). To pierwsze badanie, które ujawniło tego typu różnice zależne od płci.

Bez względu na płeć biorcy, wszczepienie żeńskich komórek macierzystych prowadziłoby do znacznie efektywniejszej regeneracji mięśni szkieletowych — uważa dr Johnny Huard. Bazując na uzyskanych wynikach, przyszłe studia z zakresu medycyny regeneracyjnej powinny uznawać "płeć" komórek macierzystych za istotny czynnik. Co więcej, eksperymenty takie jak nasz mogą prowadzić do lepszego zrozumienia związanych z płcią różnic w zakresie starzenia się i przebiegu chorób. Mogłyby też wyjaśnić, przynajmniej częściowo, dużą zmienność oraz sprzeczne wyniki opisane w literaturze biologii komórek macierzystych.

Odkrycie Amerykanów jest w zasadzie dziełem przypadku. Zespół akademików natrafił na nie podczas prac nad lekarstwem na dystrofię mięśniową typu Duchene'a (ang. Duchene muscular dystrophy, DMD). DMD to choroba genetyczna, która dotyka jednego na 3.300-3.500 chłopców.

W ich włóknach mięśniowych nie występuje dystrofina, czyli białko strukturalne komórki mięśniowej. Łączy ono cytoszkielet z kompleksem glikoproteinowym błony komórkowej (w tym przypadku sarkolemy). Dystrofina jest kodowana przez największy ludzki gen. Jest on zlokalizowany na chromosomie płciowym X. W przypadku DMD mutacja jest tak duża, że białko w ogóle nie powstaje.

Bazując na modelu zwierzęcym, a konkretnie mysim, naukowcy z zespołu badawczego Huarda wykorzystywali komórki macierzyste do dostarczania dystrofiny do mięśni. Posługiwali się komórkami uzyskiwanymi od samic lub od samców. Następnie oceniali ich zdolność do regenerowania tkanki mięśniowej samodzielnie wytwarzającej dystrofinę. Wyrażali to indeksem regeneracji (IR): proporcją włókien dystrofinopozytywnych na 100 tys. dawców. Tylko jedna na 10 wszczepionych populacji męskich miała IR powyżej 200. Dotyczyło to natomiast 40% populacji żeńskich komórek macierzystych.

Żeńskie i męskie komórki macierzyste inaczej reagują na stres i w tym specjaliści upatrują przyczyn zaobserwowanego zjawiska. Narażone na stres oksydacyjny [atak wolnych rodników tlenowych] komórki męskie wykazują zwiększoną dyferencjację, czyli różnicowanie, co może prowadzić do powstania ubytków i proliferacyjnego [proliferacja to namnażanie — przyp. red] sukcesu komórek żeńskich po transplantacji.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nierównowaga sił pomiędzy płciami jest wśród naczelnych mniej wyraźnie zaznaczona, niż się spodziewano. Faktem jest, że samce zwykle dominują nad samicami fizycznie, jednak samice potrafią uzyskać dominację nad samcami wykorzystując inne sposoby, niż siła fizyczna. Naukowcy z Uniwersytetu w Montpellier, Instytutu Antropologii Ewolucyjnej im. Maxa Plancka oraz Niemieckiego Centrum Naczelnych postanowili dowiedzieć się, dlaczego u różnych naczelnych nierównowaga sił pomiędzy samcami a samicami wygląda w różny sposób. Na podstawie obserwacji 253 populacji należących do 121 gatunków stwierdzili, że wyraźna dominacja jednej płci jest rzadkim zjawiskiem.
      Naukowcy przeprowadzili analizę badań dotyczących agresji międzypłciowej wśród naczelnych. Zauważyli przede wszystkim, że danych na ten temat jest zadziwiająco dużo. Średnio aż połowę agresywnych interakcji w grupach społecznych stanowiły interakcje międzypłciowe. Było to zaskakujące, gdyż wcześniej autorzy podobnych badań skupiali się na agresji pomiędzy przedstawicielami tej samej płci, gdyż dominujące teorie ewolucji społecznej mówiły, że samce i samice konkurują o różne zasoby.
      Gdy już badacze zauważyli, że równie często, a może nawet częściej, dochodzi do walk między płciami, chcieli sprawdzić, kto te walki wygrywa i jak proporcje wygrywającej płci zmieniają się pomiędzy gatunkami.
      Od dawna uważa się, że przewaga fizyczna u naczelnych leży po stronie samców, a przypadki takich gatunków jak bonobo czy lemur katta to wyjątki, wymagające specjalnego wyjaśnienia. Okazało się jednak, że sytuacja nie jest tak prosta, jak by się wydawało. Od pewnego czasu badania zaczynają rzucać wyzwanie tradycyjnemu poglądowi mówiącemu, jakoby dominacja samców była czymś oczywistym. A nasze badania pokazują bardziej całościowy obraz zjawiska dominacji międzypłciowej, mówi Peter Kappeler z Niemieckiego Centrum Naczelnych.
      W przeanalizowanej próbce 151 populacji, w przypadku których uczeni dysponowali danymi odpowiedniej jakości, sytuacja, w której samce wygrywały ponad 90% starć z samicami miała miejsce w 25 z nich. Z kolei w 16 populacjach to samice wygrywały ponad 90% starć. Co oznacza, że w 70% badanych populacji przewaga płci nie była ostro zarysowana lub nie było w jej w ogóle.
      Naukowcy przeanalizowali 5 hipotez wyjaśniających przewagę którejś z płci. Stwierdzili, że dominacja samic powiązana jest z kilkoma czynnikami. Dominują one tam, gdzie samice są monogamiczne, są podobnych rozmiarów co samce lub pożywają się głównie na drzewach. Innymi słowy, są to sytuacje, gdzie samice mają większy wybór czy łączą się z konkretnym samcem. Dodatkowo dominację płci pięknej wspomaga sytuacja, w której samice intensywnie konkurują o zasoby. Ma to miejsce u gatunków żyjących samotnie lub łączących się w pary. Samicom pomaga też sytuacja, gdy konflikt z samcem nie zagraża potomstwu, które jest w tym momencie od niej zależne. Tak się dzieje u gatunków, których samice mogą np. pozostawić potomstwo podczas poszukiwania pożywienia i nie muszą go ciągle ze sobą nosić.
      Z kolei dominacja samców jest bardziej widoczne wśród gatunków żyjących na ziemi, gdzie samce są większe od samic lub gdzie mają większe części ciała używane w walce i tam, gdzie jeden samiec łączy się z wieloma samicami. Gdy samiec zdobywa przewagę dzięki sile fizycznej i podporządkowaniu, siła samic leży w innych strategiach, takich jak kontrolowanie reprodukcji, mówi Elise Huchard z Uniwersytetu w Montpellier.
      Badania tego typu pozwalają nam lepiej zrozumieć ewolucję człowieka i ludzkich społeczeństw. Łatwo zauważyć, że jesteśmy gatunkiem poruszającym się po ziemi, mężczyźni są zwykle więksi od kobiet, jednak żyjemy samotnie lub łączymy się w pary. Jako gatunek posiadamy więc cechy bardziej zniuansowanej konkurencji międzypłciowej, niż zdecydowanej dominacji jednej z płci.
      Źródło: The evolution of male–female dominance relations in primate societies, https://www.pnas.org/doi/10.1073/pnas.2500405122

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Psycholodzy z zespołu prof. Clausa-Christiana Carbona z Uniwersytetu Ottona i Fryderyka w Bambergu odkryli, że ludzie rozpoznają czyjąś płeć w 244 milisekundy (243,9 ms od początku bodźca), a oceny atrakcyjności dokonują 59 milisekund (58,6) później.
      Jedna z teorii głosi, że wyewoluowaliśmy, by szybko wykrywać atrakcyjność, żeby zwiększyć swoje szanse na wybór odpowiedniego partnera.
      Podczas eksperymentu monitorowano aktywność mózgu 25 studentów, którzy oglądali 100 portretów i odnotowywali, jakiej płci są uwiecznione na nich osoby i czy są one atrakcyjne.
      Carbon podkreśla, że prędkość, z jaką dokonywano oceny po identyfikacji płci, sugeruje, że ludzie silnie kierują się płciowymi stereotypami atrakcyjności.
      Choć może się to wydawać bardzo niesprawiedliwe, atrakcyjność twarzy bardzo ułatwia codzienne życie. Atrakcyjni dorośli są [na przykład] postrzegani jako bardziej inteligentni. Oprócz tego atrakcyjni ludzie są generalnie bardziej zadowoleni z życia i szczęśliwi.
      Wyniki badań Niemców ukazały się w piśmie Neuroscience Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół z Uniwersytetu w Cambridge odkrył w mózgu nowy rodzaj komórek macierzystych o dużym potencjale regeneracyjnym.
      Zdolności samonaprawy mózgu nie są zbyt dobre, ale jak podkreślają naukowcy, można by to zmienić bez operacji, obierając na cel rezydujące w nim komórki macierzyste. Komórki macierzyste pozostają jednak zwykle w stanie spoczynku (ang. quiescence), co oznacza, że nie namnażają się ani nie przekształcają w różne rodzaje komórek. By więc myśleć o naprawie/regeneracji, najpierw trzeba je "obudzić".
      Podczas ostatnich badań doktorant Leo Otsuki i prof. Andrea Brand odkryli nowy rodzaj pozostających w uśpieniu komórek macierzystych - G2 (ang. G2 quiescent stem cell). G2 mają większy potencjał regeneracyjny niż wcześniej zidentyfikowane uśpione komórki macierzyste. Oprócz tego o wiele szybciej się aktywują, by produkować neurony i glej (nazwa G2 pochodzi od fazy cyklu komórkowego, na jakiej się zatrzymały).
      Badając mózg muszek owocówek, autorzy publikacji z pisma Science zidentyfikowali gen trbl, który wybiórczo reguluje G2. Ma on swoje odpowiedniki w ssaczym genomie (ich ekspresja zachodzi w komórkach macierzystych mózgu).
      Odkryliśmy gen, który nakazuje, by komórki te weszły w stan uśpienia. Kolejnym krokiem będzie zidentyfikowanie potencjalnych leków, które zablokują trbl i obudzą komórki macierzyste - tłumaczy Otsuki. Sądzimy, że podobne uśpione komórki występują w innych narządach i że nasze odkrycie pomoże ulepszyć lub wynaleźć nowe terapie regeneracyjne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wykorzystując komórki macierzyste pobrane w pobliżu warstwy granicznej wewnętrznej ludzkiej siatkówki, naukowcy z Uniwersyteckiego College'u Londyńskiego i Moorfields Eye Hospital przywrócili wzrok szczurom. Mają nadzieję, że zabieg uda się także w przypadku naszego gatunku, co pozwoliłoby na leczenie chorych np. z jaskrą.
      Brytyjczycy sądzą, że udało im się odtworzyć "zasoby" komórek zwojowych siatkówki, których aksony tworzą pasmo wzrokowe (rozciąga się ono od skrzyżowania wzrokowego do podkorowego ośrodka wzrokowego - ciała kolankowatego bocznego).
      Za zgodą rodzin akademicy pobrali z oczu przeznaczonych do przeszczepu rogówki próbki komórek macierzystych współistniejącego z neuronami i wspomagającego ich funkcje gleju Müllera. Trafiły one do hodowli laboratoryjnych i przekształciły się w komórki zwojowe siatkówki. Następnie wszczepiono je do oczu gryzoni.
      Ponieważ szczury nie miały wcześniej komórek zwojowych siatkówki, były ślepe. Po przeszczepie elektrody mocowane do łba ujawniły, że mózg reaguje na światło o niewielkim natężeniu.
      Dr Astrid Limb podkreśla, że choć jeszcze daleko do operacji w klinikach okulistycznych, poczyniono ważny krok naprzód w kierunku leczenia jaskry i chorób pokrewnych. W przebiegu jaskry podwyższone ciśnienie w gałce ocznej prowadzi do nieodwracalnego uszkodzenia nerwu wzrokowego oraz właśnie komórek zwojowych siatkówki.
      Przypomnijmy, że badania zespołu dr. Toma Reha z Uniwersytetu Waszyngtońskiego z 2008 r. wykazały, że nie tylko glej Müllera młodych ssaków jest zdolny do podziałów, w wyniku których powstają komórki progenitorowe, zdolne do rozwijania w nowe neurony. Dorosły glej także może zostać ponownie zastymulowany do podziałów.
    • przez KopalniaWiedzy.pl
      Siarkowodór - jedna z substancji odpowiadających za przykry zapach z ust - zwiększa zdolność dorosłych komórek macierzystych miazgi zęba do przekształcania się w hepatocyty.
      To pierwszy przypadek, kiedy udało się pozyskać komórki wątroby z miazgi zęba. Naukowcy, których badania opisano w artykule opublikowanym w Journal of Breath Research, cieszą się, bo uzyskano dużą liczbę hepatocytów o wysokiej czystości. "Wysoka czystość oznacza, że występuje mniej komórek, które zróżnicowały się w inną tkankę lub pozostały komórkami macierzystymi" - tłumaczy dr Ken Yaegaki z Nippon Dental University.
      Podczas eksperymentów Japończycy wykorzystali miazgę z wyrwanych w klinice zębów. Pozyskane komórki macierzyste podzielono na dwie hodowle - testowa była inkubowana w komorze siarkowodorowej. Po 3, 6 i 9 dniach pobrano próbki i sprawdzano, czy przekształciły się w hepatocyty. Komórki oglądano pod mikroskopem, badano też ich zdolność magazynowania glikogenu oraz zawartość mocznika (wątroba przekształca toksyczny amoniak w mocznik).
      W porównaniu do tradycyjnej metody [pozyskiwania hepatocytów do przeszczepu], która bazuje na bydlęcej surowicy płodowej, nasza metoda jest produktywna i co najważniejsze - bezpieczna. Pacjentom nie zagrażają potworniaki - nowotwory wywodzące się z wielopotencjalnych komórek zarodkowych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...